BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25078291)

  • 1. Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning.
    Chang SE
    Behav Brain Res; 2014 Oct; 273():52-6. PubMed ID: 25078291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.
    Chudasama Y; Robbins TW
    J Neurosci; 2003 Sep; 23(25):8771-80. PubMed ID: 14507977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nucleus accumbens core and shell lesions on autoshaped lever-pressing.
    Chang SE; Holland PC
    Behav Brain Res; 2013 Nov; 256():36-42. PubMed ID: 23933141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits.
    Panayi MC; Killcross S
    Elife; 2018 Jul; 7():. PubMed ID: 30044220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orbitofrontal cortex reflects changes in response-outcome contingencies during probabilistic reversal learning.
    Amodeo LR; McMurray MS; Roitman JD
    Neuroscience; 2017 Mar; 345():27-37. PubMed ID: 26996511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel learning in an autoshaping paradigm.
    Naeem M; White NM
    Behav Neurosci; 2016 Aug; 130(4):376-92. PubMed ID: 27454485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning.
    Ostlund SB; Balleine BW
    J Neurosci; 2007 May; 27(18):4819-25. PubMed ID: 17475789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing.
    Chang SE; Wheeler DS; Holland PC
    Neurobiol Learn Mem; 2012 May; 97(4):441-51. PubMed ID: 22469749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbitofrontal cortex and representation of incentive value in associative learning.
    Gallagher M; McMahan RW; Schoenbaum G
    J Neurosci; 1999 Aug; 19(15):6610-4. PubMed ID: 10414988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lesions of the amygdala central nucleus on autoshaped lever pressing.
    Chang SE; Wheeler DS; Holland PC
    Brain Res; 2012 Apr; 1450():49-56. PubMed ID: 22386516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased sign-tracking behavior in adolescent rats.
    DeAngeli NE; Miller SB; Meyer HC; Bucci DJ
    Dev Psychobiol; 2017 Nov; 59(7):840-847. PubMed ID: 28888030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of Pavlovian sign-tracking (autoshaping) following the discontinuation of inter-trial interval food in rats.
    Kearns DN; Weiss SJ
    Behav Processes; 2007 Jul; 75(3):307-11. PubMed ID: 17507179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History.
    Riceberg JS; Shapiro ML
    J Neurosci; 2017 Feb; 37(8):2010-2021. PubMed ID: 28115481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemogenetic manipulation of ventral pallidal neurons impairs acquisition of sign-tracking in rats.
    Chang SE; Todd TP; Bucci DJ; Smith KS
    Eur J Neurosci; 2015 Dec; 42(12):3105-16. PubMed ID: 26469930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning.
    Ghods-Sharifi S; Haluk DM; Floresco SB
    Neurobiol Learn Mem; 2008 May; 89(4):567-73. PubMed ID: 18054257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues.
    Burke KA; Takahashi YK; Correll J; Brown PL; Schoenbaum G
    Eur J Neurosci; 2009 Nov; 30(10):1941-6. PubMed ID: 19912335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual Differences in the Attribution of Incentive Salience to a Pavlovian Alcohol Cue.
    Villaruel FR; Chaudhri N
    Front Behav Neurosci; 2016; 10():238. PubMed ID: 28082877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning.
    Rygula R; Walker SC; Clarke HF; Robbins TW; Roberts AC
    J Neurosci; 2010 Oct; 30(43):14552-9. PubMed ID: 20980613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of Lewis and Fischer rat strains on autoshaping (sign-tracking), discrimination reversal learning and negative auto-maintenance.
    Kearns DN; Gomez-Serrano MA; Weiss SJ; Riley AL
    Behav Brain Res; 2006 May; 169(2):193-200. PubMed ID: 16469395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reward stability determines the contribution of orbitofrontal cortex to adaptive behavior.
    Riceberg JS; Shapiro ML
    J Neurosci; 2012 Nov; 32(46):16402-9. PubMed ID: 23152622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.