BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25078417)

  • 1. Development, manufacturing and application of double-sided flexible implantable microelectrodes.
    Poppendieck W; Sossalla A; Krob MO; Welsch C; Nguyen TA; Gong W; DiGiovanna J; Micera S; Merfeld DM; Hoffmann KP
    Biomed Microdevices; 2014 Dec; 16(6):837-50. PubMed ID: 25078417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantable flexible electrodes for functional electrical stimulation.
    Schneider A; Stieglitz T
    Med Device Technol; 2004; 15(1):16-8. PubMed ID: 14994633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved polyimide thin-film electrodes for neural implants.
    Ordonez JS; Boehler C; Schuettler M; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5134-7. PubMed ID: 23367084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes.
    Wurth S; Capogrosso M; Raspopovic S; Gandar J; Federici G; Kinany N; Cutrone A; Piersigilli A; Pavlova N; Guiet R; Taverni G; Rigosa J; Shkorbatova P; Navarro X; Barraud Q; Courtine G; Micera S
    Biomaterials; 2017 Apr; 122():114-129. PubMed ID: 28110171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible polyimide-based intracortical electrode arrays with bioactive capability.
    Rousche PJ; Pellinen DS; Pivin DP; Williams JC; Vetter RJ; Kipke DR
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):361-71. PubMed ID: 11327505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig.
    Kim J; Curthoys IS
    Brain Res Bull; 2004 Sep; 64(3):265-71. PubMed ID: 15464864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.
    Ramachandran A; Schuettler M; Lago N; Doerge T; Koch KP; Navarro X; Hoffmann KP; Stieglitz T
    J Neural Eng; 2006 Jun; 3(2):114-24. PubMed ID: 16705267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vitro evaluation of the long-term stability of PEDOT:PSS coated microelectrodes for chronic recording and electrical stimulation of neurons.
    Schander A; Tesmann T; Strokov S; Stemmann H; Kreiter AK; Lang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6174-6177. PubMed ID: 28269662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fascicular nerve stimulation and recording using a novel double-aisle regenerative electrode.
    Delgado-Martínez I; Righi M; Santos D; Cutrone A; Bossi S; D'Amico S; Del Valle J; Micera S; Navarro X
    J Neural Eng; 2017 Aug; 14(4):046003. PubMed ID: 28382924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic vestibulo-ocular reflexes evoked by a vestibular prosthesis.
    Merfeld DM; Haburcakova C; Gong W; Lewis RF
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1005-15. PubMed ID: 17554820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulation lifetime improvement of polyimide thin film neural implants.
    Ceyssens F; Puers R
    J Neural Eng; 2015 Oct; 12(5):054001. PubMed ID: 26269487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical stimulation of the human cochlea and the flexible multichannel intracochlear electrode.
    Jako GJ
    Otolaryngol Clin North Am; 1978 Feb; 11(1):235-40. PubMed ID: 662350
    [No Abstract]   [Full Text] [Related]  

  • 17. 3-D flexible nano-textured high-density microelectrode arrays for high-performance neuro-monitoring and neuro-stimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1072-82. PubMed ID: 24876130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of thin-film flexible microelectrode arrays for retinal stimulation and recording.
    Mathieson K; Moodie AR; Grant E; Morrison JD
    J Med Eng Technol; 2013 Feb; 37(2):79-85. PubMed ID: 23249248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2006 Jun; 95(6):3311-27. PubMed ID: 16436479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of flexible thin-film metallization stimulation electrodes: analysis of explants after first-in-human study and improvement of in vivo performance.
    Čvančara P; Boretius T; López-Álvarez VM; Maciejasz P; Andreu D; Raspopovic S; Petrini F; Micera S; Granata G; Fernandez E; Rossini PM; Yoshida K; Jensen W; Divoux JL; Guiraud D; Navarro X; Stieglitz T
    J Neural Eng; 2020 Jul; 17(4):046006. PubMed ID: 32512544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.