BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25078564)

  • 1. Two different bacterial community types are linked with the low-methane emission trait in sheep.
    Kittelmann S; Pinares-Patiño CS; Seedorf H; Kirk MR; Ganesh S; McEwan JC; Janssen PH
    PLoS One; 2014; 9(7):e103171. PubMed ID: 25078564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.
    Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT
    Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural variation in methane emission of sheep fed on a lucerne pellet diet is unrelated to rumen ciliate community type.
    Kittelmann S; Pinares-Patiño CS; Seedorf H; Kirk MR; McEwan JC; Janssen PH
    Microbiology (Reading); 2016 Mar; 162(3):459-465. PubMed ID: 26813792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sharpea and Kandleria are lactic acid producing rumen bacteria that do not change their fermentation products when co-cultured with a methanogen.
    Kumar S; Treloar BP; Teh KH; McKenzie CM; Henderson G; Attwood GT; Waters SM; Patchett ML; Janssen PH
    Anaerobe; 2018 Dec; 54():31-38. PubMed ID: 30055268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations in methane yield and microbial community profiles in the rumen of dairy cows as they pass through stages of first lactation.
    Lyons T; Bielak A; Doyle E; Kuhla B
    J Dairy Sci; 2018 Jun; 101(6):5102-5114. PubMed ID: 29550115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows.
    Ramayo-Caldas Y; Zingaretti L; Popova M; Estellé J; Bernard A; Pons N; Bellot P; Mach N; Rau A; Roume H; Perez-Enciso M; Faverdin P; Edouard N; Ehrlich D; Morgavi DP; Renand G
    J Anim Breed Genet; 2020 Jan; 137(1):49-59. PubMed ID: 31418488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic insights into the physiology of Quinella, an iconic uncultured rumen bacterium.
    Kumar S; Altermann E; Leahy SC; Jauregui R; Jonker A; Henderson G; Kittelmann S; Attwood GT; Kamke J; Waters SM; Patchett ML; Janssen PH
    Nat Commun; 2022 Oct; 13(1):6240. PubMed ID: 36266280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats.
    Zhang XM; Medrano RF; Wang M; Beauchemin KA; Ma ZY; Wang R; Wen JN; Lukuyu BA; Tan ZL; He JH
    J Anim Sci; 2019 Dec; 97(12):4999-5008. PubMed ID: 31740932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic parameters of plasma and ruminal volatile fatty acids in sheep fed alfalfa pellets and genetic correlations with enteric methane emissions1.
    Jonker A; Hickey SM; McEwan JC; Rowe SJ; Janssen PH; MacLean S; Sandoval E; Lewis S; Kjestrup H; Molano G; Agnew M; Young EA; Dodds KG; Knowler K; Pinares-Patiño CS
    J Anim Sci; 2019 Jul; 97(7):2711-2724. PubMed ID: 31212318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intravenous lipid infusion affects dry matter intake, methane yield, and rumen bacteria structure in late-lactating Holstein cows.
    Lamp O; Reyer H; Otten W; Nürnberg G; Derno M; Wimmers K; Metges CC; Kuhla B
    J Dairy Sci; 2018 Jul; 101(7):6032-6046. PubMed ID: 29605318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of altering ruminal pH by dietary buffer supplementation on methane emissions from sheep fed forage rape.
    Sun XZ; Harland R; Pacheco D
    Animal; 2020 May; 14(5):952-962. PubMed ID: 31735196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Propionibacterium spp. on ruminal fermentation, nutrient digestibility, and methane emissions in beef heifers fed a high-forage diet.
    Vyas D; McGeough EJ; McGinn SM; McAllister TA; Beauchemin KA
    J Anim Sci; 2014 May; 92(5):2192-201. PubMed ID: 24663192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows.
    Sun F; Aguerre MJ; Wattiaux MA
    J Dairy Sci; 2019 Feb; 102(2):1281-1293. PubMed ID: 30591340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.
    Kamke J; Soni P; Li Y; Ganesh S; Kelly WJ; Leahy SC; Shi W; Froula J; Rubin EM; Attwood GT
    BMC Res Notes; 2017 Aug; 10(1):367. PubMed ID: 28789673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal fermentation and microbial community dynamics in rumens of sheep grazing a ryegrass-based pasture offered either in the morning or in the afternoon.
    Vibart RE; Ganesh S; Kirk MR; Kittelmann S; Leahy SC; Janssen PH; Pacheco D
    Animal; 2019 Oct; 13(10):2242-2251. PubMed ID: 30786945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. - Invited Review - The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production.
    Shinkai T; Takizawa S; Fujimori M; Mitsumori M
    Anim Biosci; 2024 Feb; 37(2):360-369. PubMed ID: 37946422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of breeding for reduced methane emissions in New Zealand sheep on maternal and health traits.
    Hickey SM; Bain WE; Bilton TP; Greer GJ; Elmes S; Bryson B; Pinares-Patiño CS; Wing J; Jonker A; Young EA; Knowler K; Pickering NK; Dodds KG; Janssen PH; McEwan JC; Rowe SJ
    Front Genet; 2022; 13():910413. PubMed ID: 36246641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype.
    Rooke JA; Wallace RJ; Duthie CA; McKain N; de Souza SM; Hyslop JJ; Ross DW; Waterhouse T; Roehe R
    Br J Nutr; 2014 Aug; 112(3):398-407. PubMed ID: 24780126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.