These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 25078903)

  • 1. Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast.
    Tong Z; Kim MS; Pandey A; Espenshade PJ
    Mol Cell Proteomics; 2014 Nov; 13(11):2871-82. PubMed ID: 25078903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity.
    Raychaudhuri S; Espenshade PJ
    J Biol Chem; 2015 Jun; 290(23):14430-40. PubMed ID: 25918164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast.
    Lloyd SJ; Raychaudhuri S; Espenshade PJ
    J Biol Chem; 2013 Jul; 288(29):21043-21054. PubMed ID: 23760507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme reversal to explore the function of yeast E3 ubiquitin-ligases.
    MacDonald C; Winistorfer S; Pope RM; Wright ME; Piper RC
    Traffic; 2017 Jul; 18(7):465-484. PubMed ID: 28382714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex.
    Stewart EV; Nwosu CC; Tong Z; Roguev A; Cummins TD; Kim DU; Hayles J; Park HO; Hoe KL; Powell DW; Krogan NJ; Espenshade PJ
    Mol Cell; 2011 Apr; 42(2):160-71. PubMed ID: 21504829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase.
    Stewart EV; Lloyd SJ; Burg JS; Nwosu CC; Lintner RE; Daza R; Russ C; Ponchner K; Nusbaum C; Espenshade PJ
    J Biol Chem; 2012 Jan; 287(1):672-681. PubMed ID: 22086920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation.
    Zattas D; Berk JM; Kreft SG; Hochstrasser M
    J Biol Chem; 2016 Jun; 291(23):12105-18. PubMed ID: 27068744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation Signals for Ubiquitin-Proteasome Dependent Cytosolic Protein Quality Control (CytoQC) in Yeast.
    Maurer MJ; Spear ED; Yu AT; Lee EJ; Shahzad S; Michaelis S
    G3 (Bethesda); 2016 Jul; 6(7):1853-66. PubMed ID: 27172186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies.
    Reggiori F; Pelham HR
    Nat Cell Biol; 2002 Feb; 4(2):117-23. PubMed ID: 11788821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquitin-mediated targeting of a mutant plasma membrane ATPase, Pma1-7, to the endosomal/vacuolar system in yeast.
    Pizzirusso M; Chang A
    Mol Biol Cell; 2004 May; 15(5):2401-9. PubMed ID: 15020711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation.
    Stolz A; Besser S; Hottmann H; Wolf DH
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15271-6. PubMed ID: 23988329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rkr1/Ltn1 Ubiquitin Ligase-mediated Degradation of Translationally Stalled Endoplasmic Reticulum Proteins.
    Crowder JJ; Geigges M; Gibson RT; Fults ES; Buchanan BW; Sachs N; Schink A; Kreft SG; Rubenstein EM
    J Biol Chem; 2015 Jul; 290(30):18454-66. PubMed ID: 26055716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase.
    Guerriero CJ; Weiberth KF; Brodsky JL
    J Biol Chem; 2013 Jun; 288(25):18506-20. PubMed ID: 23653356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Capture of a Disabled Proteasome Identifies Erg25 as a Substrate for Endoplasmic Reticulum Associated Degradation.
    Buck TM; Zeng X; Cantrell PS; Cattley RT; Hasanbasri Z; Yates ME; Nguyen D; Yates NA; Brodsky JL
    Mol Cell Proteomics; 2020 Nov; 19(11):1896-1909. PubMed ID: 32868373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Lys-ϵ-Gly-Gly (diGly) proteomics coupled with inducible RNAi reveals ubiquitin-mediated proteolysis of DNA damage-inducible transcript 4 (DDIT4) by the E3 ligase HUWE1.
    Thompson JW; Nagel J; Hoving S; Gerrits B; Bauer A; Thomas JR; Kirschner MW; Schirle M; Luchansky SJ
    J Biol Chem; 2014 Oct; 289(42):28942-55. PubMed ID: 25147182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.
    Nakatsukasa K; Okumura F; Kamura T
    Crit Rev Biochem Mol Biol; 2015; 50(6):489-502. PubMed ID: 26362128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sterol-sensing endoplasmic reticulum (ER) membrane protein TRC8 hampers ER to Golgi transport of sterol regulatory element-binding protein-2 (SREBP-2)/SREBP cleavage-activated protein and reduces SREBP-2 cleavage.
    Irisawa M; Inoue J; Ozawa N; Mori K; Sato R
    J Biol Chem; 2009 Oct; 284(42):28995-9004. PubMed ID: 19706601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An HRD/DER-independent ER quality control mechanism involves Rsp5p-dependent ubiquitination and ER-Golgi transport.
    Haynes CM; Caldwell S; Cooper AA
    J Cell Biol; 2002 Jul; 158(1):91-101. PubMed ID: 12105183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Starvation-Dependent Regulation of Golgi Quality Control Links the TOR Signaling and Vacuolar Protein Sorting Pathways.
    Dobzinski N; Chuartzman SG; Kama R; Schuldiner M; Gerst JE
    Cell Rep; 2015 Sep; 12(11):1876-86. PubMed ID: 26344761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectopic RING activity at the ER membrane differentially impacts ERAD protein quality control pathways.
    Mehrtash AB; Hochstrasser M
    J Biol Chem; 2023 Mar; 299(3):102927. PubMed ID: 36682496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.