BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25079060)

  • 1. Structure-based druggability assessment of the mammalian structural proteome with inclusion of light protein flexibility.
    Loving KA; Lin A; Cheng AC
    PLoS Comput Biol; 2014 Jul; 10(7):e1003741. PubMed ID: 25079060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics.
    Fauman EB; Rai BK; Huang ES
    Curr Opin Chem Biol; 2011 Aug; 15(4):463-8. PubMed ID: 21704549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.
    Hussein HA; Borrel A; Geneix C; Petitjean M; Regad L; Camproux AC
    Nucleic Acids Res; 2015 Jul; 43(W1):W436-42. PubMed ID: 25956651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-like density: a method of quantifying the "bindability" of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank.
    Sheridan RP; Maiorov VN; Holloway MK; Cornell WD; Gao YD
    J Chem Inf Model; 2010 Nov; 50(11):2029-40. PubMed ID: 20977231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the structural origins of cryptic sites on proteins.
    Beglov D; Hall DR; Wakefield AE; Luo L; Allen KN; Kozakov D; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3416-E3425. PubMed ID: 29581267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the druggability of the human proteome with eFindSite.
    Kana O; Brylinski M
    J Comput Aided Mol Des; 2019 May; 33(5):509-519. PubMed ID: 30888556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties.
    Borrel A; Regad L; Xhaard H; Petitjean M; Camproux AC
    J Chem Inf Model; 2015 Apr; 55(4):882-95. PubMed ID: 25835082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Druggability Assessment in TRAPP Using Machine Learning Approaches.
    Yuan JH; Han SB; Richter S; Wade RC; Kokh DB
    J Chem Inf Model; 2020 Mar; 60(3):1685-1699. PubMed ID: 32105476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive identification of "druggable" protein ligand binding sites.
    An J; Totrov M; Abagyan R
    Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine-induced formation and druggability score prediction of protein surface pockets.
    Bongini P; Niccolai N; Bianchini M
    J Bioinform Comput Biol; 2019 Oct; 17(5):1950026. PubMed ID: 31744363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Based Analysis of Cryptic-Site Opening.
    Sun Z; Wakefield AE; Kolossvary I; Beglov D; Vajda S
    Structure; 2020 Feb; 28(2):223-235.e2. PubMed ID: 31810712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based maximal affinity model predicts small-molecule druggability.
    Cheng AC; Coleman RG; Smyth KT; Cao Q; Soulard P; Caffrey DR; Salzberg AC; Huang ES
    Nat Biotechnol; 2007 Jan; 25(1):71-5. PubMed ID: 17211405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based assessment and druggability classification of protein-protein interaction sites.
    Alzyoud L; Bryce RA; Al Sorkhy M; Atatreh N; Ghattas MA
    Sci Rep; 2022 May; 12(1):7975. PubMed ID: 35562538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.
    PĂ©rot S; Sperandio O; Miteva MA; Camproux AC; Villoutreix BO
    Drug Discov Today; 2010 Aug; 15(15-16):656-67. PubMed ID: 20685398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding and predicting druggability. A high-throughput method for detection of drug binding sites.
    Schmidtke P; Barril X
    J Med Chem; 2010 Aug; 53(15):5858-67. PubMed ID: 20684613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting protein druggability.
    Hajduk PJ; Huth JR; Tse C
    Drug Discov Today; 2005 Dec; 10(23-24):1675-82. PubMed ID: 16376828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites.
    Cimermancic P; Weinkam P; Rettenmaier TJ; Bichmann L; Keedy DA; Woldeyes RA; Schneidman-Duhovny D; Demerdash ON; Mitchell JC; Wells JA; Fraser JS; Sali A
    J Mol Biol; 2016 Feb; 428(4):709-719. PubMed ID: 26854760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Collective Variable for the Rapid Exploration of Protein Druggability.
    Cuchillo R; Pinto-Gil K; Michel J
    J Chem Theory Comput; 2015 Mar; 11(3):1292-307. PubMed ID: 26579775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining global and local measures for structure-based druggability predictions.
    Volkamer A; Kuhn D; Grombacher T; Rippmann F; Rarey M
    J Chem Inf Model; 2012 Feb; 52(2):360-72. PubMed ID: 22148551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.