These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25079094)

  • 1. Arsenite oxidation by the phyllosphere bacterial community associated with Wolffia australiana.
    Xie WY; Su JQ; Zhu YG
    Environ Sci Technol; 2014 Aug; 48(16):9668-74. PubMed ID: 25079094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by illumina high-throughput sequencing.
    Xie WY; Su JQ; Zhu YG
    Appl Environ Microbiol; 2015 Jan; 81(2):522-32. PubMed ID: 25362067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
    Inskeep WP; Macur RE; Hamamura N; Warelow TP; Ward SA; Santini JM
    Environ Microbiol; 2007 Apr; 9(4):934-43. PubMed ID: 17359265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil.
    Zhang J; Zhou W; Liu B; He J; Shen Q; Zhao FJ
    Environ Sci Technol; 2015 May; 49(10):5956-64. PubMed ID: 25905768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.
    Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S
    Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa.
    Zhang X; Zhao FJ; Huang Q; Williams PN; Sun GX; Zhu YG
    New Phytol; 2009; 182(2):421-428. PubMed ID: 19210724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine.
    Zeng XC; E G; Wang J; Wang N; Chen X; Mu Y; Li H; Yang Y; Liu Y; Wang Y
    Appl Environ Microbiol; 2016 Dec; 82(24):7019-7029. PubMed ID: 27663031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.
    Chang JS
    Environ Pollut; 2015 Nov; 206():315-23. PubMed ID: 26219073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenite-induced changes in abundance and expression of arsenite transporter and arsenite oxidase genes of a soil microbial community.
    Poirel J; Joulian C; Leyval C; Billard P
    Res Microbiol; 2013 Jun; 164(5):457-65. PubMed ID: 23396038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain.
    Wu YF; Chen J; Xie WY; Peng C; Tang ST; Rosen BP; Kappler A; Zhang J; Zhao FJ
    Environ Microbiol; 2023 Aug; 25(8):1538-1548. PubMed ID: 36978205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata.
    Zhen Z; Yan C; Zhao Y
    Environ Pollut; 2020 Jun; 261():114232. PubMed ID: 32114122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria.
    Zeng XC; He Z; Chen X; Cao QAD; Li H; Wang Y
    Ecotoxicol Environ Saf; 2018 Dec; 165():1-10. PubMed ID: 30173020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Arsenic and Iron on the Community and Abundance of Arsenite-Oxidizing Bacteria in an Arsenic-Affected Groundwater Aquifer.
    Pipattanajaroenkul P; Chotpantarat S; Termsaithong T; Sonthiphand P
    Curr Microbiol; 2021 Apr; 78(4):1324-1334. PubMed ID: 33638670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epiphytic bacterial community enhances arsenic uptake and reduction by Myriophyllum verticillatum.
    Zhen Z; Yan C; Zhao Y
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):44205-44217. PubMed ID: 32757129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity.
    Kataoka T; Mitsunobu S; Hamamura N
    Microbes Environ; 2018 Jul; 33(2):214-221. PubMed ID: 29887548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Arsenite on the Bacterial Community Structure and Diversity in Soil.
    Dong DT; Yamamura S; Amachi S
    Microbes Environ; 2016; 31(1):41-8. PubMed ID: 26903368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial Communities and Functional Genes Stimulated During Anaerobic Arsenite Oxidation and Nitrate Reduction in a Paddy Soil.
    Li X; Qiao J; Li S; Häggblom MM; Li F; Hu M
    Environ Sci Technol; 2020 Feb; 54(4):2172-2181. PubMed ID: 31773946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic speciation, the abundance of arsenite-oxidizing bacteria and microbial community structures in groundwater, surface water, and soil from a gold mine.
    Sonthiphand P; Kraidech S; Polart S; Chotpantarat S; Kusonmano K; Uthaipaisanwong P; Rangsiwutisak C; Luepromchai E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(7):769-785. PubMed ID: 34038319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies.
    Das S; Jean JS; Chou ML; Rathod J; Liu CC
    J Hazard Mater; 2016 Jan; 302():10-18. PubMed ID: 26448489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils.
    Zhang J; Zhao S; Xu Y; Zhou W; Huang K; Tang Z; Zhao FJ
    Environ Sci Technol; 2017 Apr; 51(8):4377-4386. PubMed ID: 28358982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.