These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25079110)

  • 1. A reflectometric interferometric nanosensor for sarcosine.
    Diltemiz SE; Uslu O
    Biotechnol Prog; 2015; 31(1):55-61. PubMed ID: 25079110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line determination of sarcosine in biological fluids utilizing dummy molecularly imprinted polymers in microextraction by packed sorbent.
    Moein MM; Abdel-Rehim A; Abdel-Rehim M
    J Sep Sci; 2015 Mar; 38(5):788-95. PubMed ID: 25545817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiometric sensor fabrication having 2D sarcosine memories and analytical features.
    Özkütük EB; Diltemiz SE; Avcı Ş; Uğurağ D; Aykanat RB; Ersöz A; Say R
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():231-5. PubMed ID: 27612708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles.
    Sari E; Üzek R; Duman M; Denizli A
    Talanta; 2016 Apr; 150():607-14. PubMed ID: 26838449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rapid Method for the Detection of Sarcosine Using SPIONs/Au/CS/SOX/NPs for Prostate Cancer Sensing.
    Uhlirova D; Stankova M; Docekalova M; Hosnedlova B; Kepinska M; Ruttkay-Nedecky B; Ruzicka J; Fernandez C; Milnerowicz H; Kizek R
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30467297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly imprinted based surface plasmon resonance nanosensors for microalbumin detection.
    Esentürk MK; Akgönüllü S; Yılmaz F; Denizli A
    J Biomater Sci Polym Ed; 2019 Jun; 30(8):646-661. PubMed ID: 30920349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of MIP-based QCM nanosensor for detection of caffeic acid.
    Gültekin A; Karanfil G; Kuş M; Sönmezoğlu S; Say R
    Talanta; 2014 Feb; 119():533-7. PubMed ID: 24401452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Liquid Chromatographic Analysis of Sarcosine as a Fluorescent Levofloxacin Derivative.
    Chung TC; Li CT; Kou HS; Wu HL
    J Chromatogr Sci; 2015 Sep; 53(8):1310-5. PubMed ID: 25688037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles.
    Sener G; Ozgur E; Yılmaz E; Uzun L; Say R; Denizli A
    Biosens Bioelectron; 2010 Oct; 26(2):815-21. PubMed ID: 20605089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecularly imprinted nanoparticles prepared by miniemulsion polymerization as a sorbent for selective extraction and purification of efavirenz from human serum and urine.
    Pourfarzib M; Shekarchi M; Rastegar H; Akbari-Adergani B; Mehramizi A; Dinarvand R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 974():1-8. PubMed ID: 25463191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of surface plasmon resonance-based nanosensor for curcumin detection.
    Çikrik Ş; Çimen D; Bereli N; Denizli A
    Turk J Chem; 2022; 46(1):14-26. PubMed ID: 38143893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring potential prostate cancer biomarkers in urine by capillary electrophoresis-tandem mass spectrometry.
    Soliman LC; Hui Y; Hewavitharana AK; Chen DD
    J Chromatogr A; 2012 Dec; 1267():162-9. PubMed ID: 22824219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles.
    Lan J; Xu W; Wan Q; Zhang X; Lin J; Chen J; Chen J
    Anal Chim Acta; 2014 May; 825():63-8. PubMed ID: 24767152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites.
    Sari E; Üzek R; Duman M; Denizli A
    J Biomater Sci Polym Ed; 2018 Aug; 29(11):1302-1318. PubMed ID: 29607779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of molecularly imprinted polymer nanoparticles by photon correlation spectroscopy.
    Malm B; Yoshimatsu K; Ye L; Krozer A
    J Mol Recognit; 2014 Dec; 27(12):714-21. PubMed ID: 25319619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promising marker found for deadly prostate cancer.
    Kuehn BM
    JAMA; 2009 Mar; 301(10):1008. PubMed ID: 19278937
    [No Abstract]   [Full Text] [Related]  

  • 17. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization.
    Wu H; Liu T; Ma C; Xue R; Deng C; Zeng H; Shen X
    Anal Bioanal Chem; 2011 Aug; 401(2):635-46. PubMed ID: 21626193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecularly imprinted polymer films for reflectometric interference spectroscopic sensors.
    Belmont AS; Jaeger S; Knopp D; Niessner R; Gauglitz G; Haupt K
    Biosens Bioelectron; 2007 Jun; 22(12):3267-72. PubMed ID: 17368014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples.
    Rebelo TS; Pereira CM; Sales MG; Noronha JP; Costa-Rodrigues J; Silva F; Fernandes MH
    Anal Chim Acta; 2014 Nov; 850():26-32. PubMed ID: 25441156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive determination of the potential biomarker sarcosine for prostate cancer by LC-MS with N,N'-dicyclohexylcarbodiimide derivatization.
    Chen J; Zhang J; Zhang W; Chen Z
    J Sep Sci; 2014 Jan; 37(1-2):14-9. PubMed ID: 24293130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.