BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25079249)

  • 1. [FeFe] hydrogenase: protonation of {2Fe3S} systems and formation of super-reduced hydride states.
    Jablonskytė A; Wright JA; Fairhurst SA; Webster LR; Pickett CJ
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10143-6. PubMed ID: 25079249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate.
    Carroll ME; Barton BE; Rauchfuss TB; Carroll PJ
    J Am Chem Soc; 2012 Nov; 134(45):18843-52. PubMed ID: 23126330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes.
    Zhao X; Georgakaki IP; Miller ML; Mejia-Rodriguez R; Chiang CY; Darensbourg MY
    Inorg Chem; 2002 Jul; 41(15):3917-28. PubMed ID: 12132916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, facile deprotonation, and rapid H/D exchange of the mu-hydride diiron model complexes of the [FeFe]-hydrogenase containing a pendant amine in a chelating diphosphine ligand.
    Wang N; Wang M; Liu J; Jin K; Chen L; Sun L
    Inorg Chem; 2009 Dec; 48(24):11551-8. PubMed ID: 20000647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A carbonyl-rich bridging hydride complex relevant to the Fe-Fe hydrogenase active site.
    Matthews SL; Heinekey DM
    Inorg Chem; 2010 Nov; 49(21):9746-8. PubMed ID: 20883039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights.
    Huynh MT; Wang W; Rauchfuss TB; Hammes-Schiffer S
    Inorg Chem; 2014 Oct; 53(19):10301-11. PubMed ID: 25207842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts.
    Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D
    Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending the motif of the [FeFe]-hydrogenase active site models: protonation of Fe2(NR)2(CO)6-xLx species.
    Volkers PI; Rauchfuss TB
    J Inorg Biochem; 2007 Nov; 101(11-12):1748-51. PubMed ID: 17606299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection.
    Leidel N; Chernev P; Havelius KG; Schwartz L; Ott S; Haumann M
    J Am Chem Soc; 2012 Aug; 134(34):14142-57. PubMed ID: 22860512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer?
    Filippi G; Arrigoni F; Bertini L; De Gioia L; Zampella G
    Inorg Chem; 2015 Oct; 54(19):9529-42. PubMed ID: 26359661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a diferrous terminal hydride mechanistically relevant to the Fe-only hydrogenases.
    van der Vlugt JI; Rauchfuss TB; Whaley CM; Wilson SR
    J Am Chem Soc; 2005 Nov; 127(46):16012-3. PubMed ID: 16287273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand versus metal protonation of an iron hydrogenase active site mimic.
    Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R
    Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proton-hydride diiron complex with a base-containing diphosphine ligand relevant to the [FeFe]-hydrogenase active site.
    Wang N; Wang M; Zhang T; Li P; Liu J; Sun L
    Chem Commun (Camb); 2008 Nov; (44):5800-2. PubMed ID: 19009086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton Transfer Mechanisms in Bimetallic Hydrogenases.
    Tai H; Hirota S; Stripp ST
    Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diiron dithiolato carbonyls related to the H(ox)CO state of [FeFe]-hydrogenase.
    Justice AK; Nilges MJ; Rauchfuss TB; Wilson SR; De Gioia L; Zampella G
    J Am Chem Soc; 2008 Apr; 130(15):5293-301. PubMed ID: 18341276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of a series of model complexes of the active site of [Fe]-hydrogenase (Hmd).
    Chen D; Ahrens-Botzong A; Schünemann V; Scopelliti R; Hu X
    Inorg Chem; 2011 Jun; 50(11):5249-57. PubMed ID: 21539357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, structures and electrochemistry studies of 2Fe2S-Fe(ii)(S-2N)(2) models for H-cluster of [FeFe]-hydrogenase.
    Hu MQ; Wen HM; Ma CB; Li N; Yan QY; Chen H; Chen CN
    Dalton Trans; 2010 Oct; 39(40):9484-6. PubMed ID: 20830399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [FeFe] Hydrogenases.
    Sommer C; Adamska-Venkatesh A; Pawlak K; Birrell JA; Rüdiger O; Reijerse EJ; Lubitz W
    J Am Chem Soc; 2017 Feb; 139(4):1440-1443. PubMed ID: 28075576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced electron paramagnetic resonance and density functional theory study of a {2Fe3S} cluster mimicking the active site of [FeFe] hydrogenase.
    Silakov A; Shaw JL; Reijerse EJ; Lubitz W
    J Am Chem Soc; 2010 Dec; 132(49):17578-87. PubMed ID: 21082840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase.
    Mulder DW; Guo Y; Ratzloff MW; King PW
    J Am Chem Soc; 2017 Jan; 139(1):83-86. PubMed ID: 27973768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.