BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25079266)

  • 1. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water.
    Burkowska-But A; Sionkowski G; Walczak M
    J Environ Sci (China); 2014 Mar; 26(3):542-9. PubMed ID: 25079266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials.
    Kwok KW; Auffan M; Badireddy AR; Nelson CM; Wiesner MR; Chilkoti A; Liu J; Marinakos SM; Hinton DE
    Aquat Toxicol; 2012 Sep; 120-121():59-66. PubMed ID: 22634717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver nanoparticle behaviour in lake water depends on their surface coating.
    Jiménez-Lamana J; Slaveykova VI
    Sci Total Environ; 2016 Dec; 573():946-953. PubMed ID: 27599058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells.
    Nymark P; Catalán J; Suhonen S; Järventaus H; Birkedal R; Clausen PA; Jensen KA; Vippola M; Savolainen K; Norppa H
    Toxicology; 2013 Nov; 313(1):38-48. PubMed ID: 23142790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions.
    Li Y; Zhang W; Niu J; Chen Y
    Environ Sci Technol; 2013 Sep; 47(18):10293-301. PubMed ID: 23952964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.
    Zhao CM; Wang WX
    Nanotoxicology; 2012 Jun; 6(4):361-70. PubMed ID: 21591875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds.
    Peng Y; Song C; Yang C; Guo Q; Yao M
    Int J Nanomedicine; 2017; 12():295-304. PubMed ID: 28115847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes).
    Jung YJ; Kim KT; Kim JY; Yang SY; Lee BG; Kim SD
    J Hazard Mater; 2014 Feb; 267():206-13. PubMed ID: 24457612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil.
    Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW
    Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle uptake efficiency is significantly affected by type of capping agent and cell line.
    Zhang F; Durham P; Sayes CM; Lau BL; Bruce ED
    J Appl Toxicol; 2015 Oct; 35(10):1114-21. PubMed ID: 25809700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses.
    Strickland JD; LeFew WR; Crooks J; Hall D; Ortenzio JN; Dreher K; Shafer TJ
    Toxicology; 2016 Apr; 355-356():1-8. PubMed ID: 27179409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The in Vitro Effect of Polyvinylpyrrolidone and Citrate Coated Silver Nanoparticles on Erythrocytic Oxidative Damage and Eryptosis.
    Ferdous Z; Beegam S; Tariq S; Ali BH; Nemmar A
    Cell Physiol Biochem; 2018; 49(4):1577-1588. PubMed ID: 30223265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity.
    Silva T; Pokhrel LR; Dubey B; Tolaymat TM; Maier KJ; Liu X
    Sci Total Environ; 2014 Jan; 468-469():968-76. PubMed ID: 24091120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle coating-dependent interaction of molecular weight fractionated natural organic matter: impacts on the aggregation of silver nanoparticles.
    Yin Y; Shen M; Tan Z; Yu S; Liu J; Jiang G
    Environ Sci Technol; 2015 Jun; 49(11):6581-9. PubMed ID: 25941838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles.
    Kang K; Lim DH; Choi IH; Kang T; Lee K; Moon EY; Yang Y; Lee MS; Lim JS
    Toxicol Lett; 2011 Sep; 205(3):227-34. PubMed ID: 21729742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid-dependent transformations of citrate-coated silver nanoparticles: impact on morphology, stability and toxicity.
    Shi J; Sun X; Zou X; Zhang H
    Toxicol Lett; 2014 Aug; 229(1):17-24. PubMed ID: 24910988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces.
    Song JE; Phenrat T; Marinakos S; Xiao Y; Liu J; Wiesner MR; Tilton RD; Lowry GV
    Environ Sci Technol; 2011 Jul; 45(14):5988-95. PubMed ID: 21692483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.