These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 2507950)
21. [Study on the assay of uremic protein-binding inhibitors: furan compound and hippuric acid]. Tanaka Y Nihon Jinzo Gakkai Shi; 1991 Jul; 33(7):643-51. PubMed ID: 1749115 [TBL] [Abstract][Full Text] [Related]
22. Correlation of a colorimetric and a HPLC method for the determination of serum hippuric acid concentrations in uremia. Vanholder R; De Smet R; Schoots A; Ringoir S Nephron; 1988; 49(2):164-8. PubMed ID: 3380232 [TBL] [Abstract][Full Text] [Related]
23. A furan fatty acid and indoxyl sulfate are the putative inhibitors of thyroxine hepatocyte transport in uremia. Lim CF; Bernard BF; de Jong M; Docter R; Krenning EP; Hennemann G J Clin Endocrinol Metab; 1993 Feb; 76(2):318-24. PubMed ID: 8432774 [TBL] [Abstract][Full Text] [Related]
24. In vitro Removal of Protein-Bound Retention Solutes by Extracorporeal Blood Purification Procedures. Schildboeck C; Harm S; Hartmann J Blood Purif; 2024; 53(4):231-242. PubMed ID: 38262384 [TBL] [Abstract][Full Text] [Related]
25. Binding of hippurate in normal plasma and in uremic plasma pre- and postdialysis. Farrell PC; Gotch FA; Peters JH; Berridge BJ; Lam M Nephron; 1978; 20(1):40-6. PubMed ID: 619299 [TBL] [Abstract][Full Text] [Related]
26. Contribution of residual function to removal of protein-bound solutes in hemodialysis. Marquez IO; Tambra S; Luo FY; Li Y; Plummer NS; Hostetter TH; Meyer TW Clin J Am Soc Nephrol; 2011 Feb; 6(2):290-6. PubMed ID: 21030575 [TBL] [Abstract][Full Text] [Related]
27. Exploring binding characteristics and the related competition of different protein-bound uremic toxins. Deltombe O; de Loor H; Glorieux G; Dhondt A; Van Biesen W; Meijers B; Eloot S Biochimie; 2017 Aug; 139():20-26. PubMed ID: 28528271 [TBL] [Abstract][Full Text] [Related]
28. Roles of hippurate and indoxyl sulfate in the impaired ligand binding by azotemic plasma. Gulyassy PF; Jarrard E; Stanfel L Adv Exp Med Biol; 1987; 223():55-8. PubMed ID: 3128940 [No Abstract] [Full Text] [Related]
29. Study by means of high-performance liquid chromatography of solutes that decrease theophylline/protein binding in the serum of uremic patients. De Smet R; Vogeleere P; Van Kaer J; Lameire N; Vanholder R J Chromatogr A; 1999 Jun; 847(1-2):141-53. PubMed ID: 10431358 [TBL] [Abstract][Full Text] [Related]
30. Screening of UV-absorbing solutes in uremic serum by reversed phase HPLC--change of blood levels in different therapies. Schoots AC; Homan HR; Gladdines MM; Cramers CA; de Smet R; Ringoir SM Clin Chim Acta; 1985 Feb; 146(1):37-51. PubMed ID: 3987038 [TBL] [Abstract][Full Text] [Related]
31. Removal of uremic retention products by hemodialysis is coupled with indiscriminate loss of vital metabolites. Zhang ZH; Mao JR; Chen H; Su W; Zhang Y; Zhang L; Chen DQ; Zhao YY; Vaziri ND Clin Biochem; 2017 Dec; 50(18):1078-1086. PubMed ID: 28928007 [TBL] [Abstract][Full Text] [Related]
32. Removal of protein-bound uraemic toxins by haemodialysis. Niwa T Blood Purif; 2013; 35 Suppl 2():20-5. PubMed ID: 23676831 [TBL] [Abstract][Full Text] [Related]
33. Contributions of hippurate, indoxyl sulfate, and o-hydroxyhippurate to impaired ligand binding by plasma in azotemic humans. Gulyassy PF; Jarrard E; Stanfel LA Biochem Pharmacol; 1987 Dec; 36(24):4215-20. PubMed ID: 3120733 [TBL] [Abstract][Full Text] [Related]
34. Hippuric acid as a marker. Vanholder R; Schoots A; Cramers C; De Smet R; Van Landschoot N; Wizemann V; Botella J; Ringoir S Adv Exp Med Biol; 1987; 223():59-67. PubMed ID: 3447451 [No Abstract] [Full Text] [Related]
35. Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. Yen SC; Liu ZW; Juang RS; Sahoo S; Huang CH; Chen P; Hsiao YS; Fang JT ACS Appl Mater Interfaces; 2019 Nov; 11(47):43843-43856. PubMed ID: 31663727 [TBL] [Abstract][Full Text] [Related]
36. Removal of P-cresol sulfate by hemodialysis. Martinez AW; Recht NS; Hostetter TH; Meyer TW J Am Soc Nephrol; 2005 Nov; 16(11):3430-6. PubMed ID: 16120820 [TBL] [Abstract][Full Text] [Related]
37. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. Sirich TL; Funk BA; Plummer NS; Hostetter TH; Meyer TW J Am Soc Nephrol; 2014 Mar; 25(3):615-22. PubMed ID: 24231664 [TBL] [Abstract][Full Text] [Related]
38. Indoxyl sulfate and atherosclerotic risk factors in hemodialysis patients. Taki K; Tsuruta Y; Niwa T Am J Nephrol; 2007; 27(1):30-5. PubMed ID: 17215572 [TBL] [Abstract][Full Text] [Related]
39. Do only small uremic toxins, chromophores, contribute to the online dialysis dose monitoring by UV absorbance? Arund J; Tanner R; Uhlin F; Fridolin I Toxins (Basel); 2012 Oct; 4(10):849-61. PubMed ID: 23162701 [TBL] [Abstract][Full Text] [Related]
40. Increased free phenytoin concentrations in predialysis serum compared to postdialysis serum in patients with uremia treated with hemodialysis. Role of uremic compounds. Dasgupta A; Abu-Alfa A Am J Clin Pathol; 1992 Jul; 98(1):19-25. PubMed ID: 1615921 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]