BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25079891)

  • 1. Chill coma temperatures appear similar along a latitudinal gradient, in contrast to divergent chill coma recovery times, in two widespread ant species.
    Maysov A
    J Exp Biol; 2014 Aug; 217(Pt 15):2650-8. PubMed ID: 25079891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Expression of stress proteins of family HSP70 in response to cold in Myrmica ants from different geographic populations].
    Maĭsov AV; Podlipaeva IuI; Kipiatkov VE
    Tsitologiia; 2007; 49(8):702-6. PubMed ID: 17926568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis.
    Castañeda LE; Lardies MA; Bozinovic F
    J Insect Physiol; 2005 Dec; 51(12):1346-51. PubMed ID: 16197957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster.
    Macdonald SS; Rako L; Batterham P; Hoffmann AA
    J Insect Physiol; 2004 Aug; 50(8):695-700. PubMed ID: 15288203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod.
    Wallace GT; Kim TL; Neufeld CJ
    Conserv Physiol; 2014; 2(1):cou041. PubMed ID: 27293662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trade-Offs in Cold Resistance at the Northern Range Edge of the Common Woodland Ant
    Nguyen AD; Brown M; Zitnay J; Cahan SH; Gotelli NJ; Arnett A; Ellison AM
    Am Nat; 2019 Dec; 194(6):E151-E163. PubMed ID: 31738107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.
    Stoks R; De Block M
    PLoS One; 2011 Feb; 6(2):e16935. PubMed ID: 21390210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle membrane potential and insect chill coma.
    Andersen JL; MacMillan HA; Overgaard J
    J Exp Biol; 2015 Aug; 218(Pt 16):2492-5. PubMed ID: 26089529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates.
    Everatt MJ; Bale JS; Convey P; Worland MR; Hayward SA
    J Insect Physiol; 2013 Oct; 59(10):1057-64. PubMed ID: 23973412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits.
    Anderson AR; Hoffmann AA; McKechnie SW
    Genet Res; 2005 Feb; 85(1):15-22. PubMed ID: 16089033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold climate specialization: adaptive covariation between metabolic rate and thermoregulation in pregnant vipers.
    Lourdais O; Guillon M; Denardo D; Blouin-Demers G
    Physiol Behav; 2013 Jul; 119():149-55. PubMed ID: 23769691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexity of the cold acclimation response in Drosophila melanogaster.
    Rako L; Hoffmann AA
    J Insect Physiol; 2006 Jan; 52(1):94-104. PubMed ID: 16257412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection.
    Gerken AR; Mackay TF; Morgan TJ
    J Therm Biol; 2016 Jul; 59():77-85. PubMed ID: 27264892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster.
    Ransberry VE; MacMillan HA; Sinclair BJ
    Physiol Biochem Zool; 2011; 84(6):553-9. PubMed ID: 22030848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling.
    MacMillan HA; Findsen A; Pedersen TH; Overgaard J
    J Exp Biol; 2014 Aug; 217(Pt 16):2930-8. PubMed ID: 24902750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chill coma recovery of Ceratitis capitata adults across the Northern Hemisphere.
    Moraiti CA; Verykouki E; Papadopoulos NT
    Sci Rep; 2022 Oct; 12(1):17555. PubMed ID: 36266456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in Locusta migratoria.
    Findsen A; Pedersen TH; Petersen AG; Nielsen OB; Overgaard J
    J Exp Biol; 2014 Apr; 217(Pt 8):1297-306. PubMed ID: 24744424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold comfort: metabolic rate and tolerance to low temperatures predict latitudinal distribution in ants.
    Willot Q; Ørsted M; Malte H; Overgaard J
    Proc Biol Sci; 2023 Sep; 290(2006):20230985. PubMed ID: 37670587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.