These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25079894)

  • 41. Aggregated oviposition in Rhodnius prolixus, sensory cues and physiological consequences.
    Rolandi C; Schilman PE
    J Insect Physiol; 2017 Apr; 98():74-82. PubMed ID: 27940266
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discontinuous gas exchange in dung beetles: patterns and ecological implications.
    Duncan FD; Byrne MJ
    Oecologia; 2000 Mar; 122(4):452-458. PubMed ID: 28308336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of temperature on the gas exchange cycle in Agathemera crassa.
    Thienel M; Canals M; Bozinovic F; Veloso C
    Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():126-30. PubMed ID: 25624164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology.
    Clusella-Trullas S; Chown SL
    J Exp Biol; 2008 Oct; 211(Pt 19):3139-46. PubMed ID: 18805813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolism and energy supply below the critical thermal minimum of a chill-susceptible insect.
    Macmillan HA; Williams CM; Staples JF; Sinclair BJ
    J Exp Biol; 2012 Apr; 215(Pt 8):1366-72. PubMed ID: 22442375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Allometric scaling of discontinuous gas exchange patterns in the locust Locusta migratoria throughout ontogeny.
    Snelling EP; Matthews PG; Seymour RS
    J Exp Biol; 2012 Oct; 215(Pt 19):3388-93. PubMed ID: 22735346
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Respiratory pattern transitions in three species of Glossina (Diptera, Glossinidae).
    Basson CH; Terblanche JS
    J Insect Physiol; 2011 Apr; 57(4):433-43. PubMed ID: 21215750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gas Exchange Models for a Flexible Insect Tracheal System.
    Simelane SM; Abelman S; Duncan FD
    Acta Biotheor; 2016 Jun; 64(2):161-96. PubMed ID: 27209375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gas exchange characteristics, metabolic rate and water loss of the Heelwalker, Karoophasma biedouwensis (Mantophasmatodea: Austrophasmatidae).
    Chown SL; Marais E; Picker MD; Terblanche JS
    J Insect Physiol; 2006 May; 52(5):442-9. PubMed ID: 16466738
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discontinuous ventilation in insects: protecting tissues from O2.
    Bradley TJ
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):30-6. PubMed ID: 16581315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discontinuous gas exchange cycles in aphodius fossor (Scarabaeidae): a test of hypotheses concerning origins and mechanisms.
    Chown SL; Holter P
    J Exp Biol; 2000 Jan; 203(Pt 2):397-403. PubMed ID: 10607549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Response to heat in Rhodnius prolixus: the role of the thermal background.
    Fresquet N; Lazzari CR
    J Insect Physiol; 2011 Oct; 57(10):1446-9. PubMed ID: 21806990
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temperature preference in Rhodnius prolixus, effects and possible consequences.
    Schilman PE; Lazzari CR
    Acta Trop; 2004 Mar; 90(1):115-22. PubMed ID: 14739030
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spiracular fluttering increases oxygen uptake.
    Lawley SD; Reed MC; Nijhout HF
    PLoS One; 2020; 15(5):e0232450. PubMed ID: 32433692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia.
    Duncan FD; Dickman CR
    Oecologia; 2001 Dec; 129(4):509-517. PubMed ID: 24577690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The hygric hypothesis does not hold water: abolition of discontinuous gas exchange cycles does not affect water loss in the ant Camponotus vicinus.
    Lighton JR; Turner RJ
    J Exp Biol; 2008 Feb; 211(Pt 4):563-7. PubMed ID: 18245633
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Control of spiracles in silk moths by oxygen and carbon dioxide.
    Burkett BN; Schneiderman HA
    Science; 1967 Jun; 156(3782):1604-6. PubMed ID: 6025119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic responses to starvation and feeding contribute to the invasiveness of an emerging pest insect.
    Smit C; Javal M; Lehmann P; Terblanche JS
    J Insect Physiol; 2021 Jan; 128():104162. PubMed ID: 33189714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Respiratory and cuticular water loss in insects with continuous gas exchange: comparison across five ant species.
    Schilman PE; Lighton JR; Holway DA
    J Insect Physiol; 2005 Dec; 51(12):1295-305. PubMed ID: 16154585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Comparison of feeding and defecation patterns of Rhodnius colombiensis and Rhodnius prolixus(Hempitera, Reduviidae, Triatominae) under laboratory conditions].
    Arévalo A; Carranza JC; Guhl F; Clavijo JA; Vallejo GA
    Biomedica; 2007 Jan; 27 Suppl 1():101-9. PubMed ID: 18154250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.