These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 25079995)
1. Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite. Xu Y; Yang M; Yao T; Xiong H J Environ Sci (China); 2014 Jul; 26(7):1463-70. PubMed ID: 25079995 [TBL] [Abstract][Full Text] [Related]
2. Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells. Xiong H; Liao Y; Zhou L Environ Sci Technol; 2008 Dec; 42(23):8681-6. PubMed ID: 19192781 [TBL] [Abstract][Full Text] [Related]
3. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Liao Y; Liang J; Zhou L Chemosphere; 2011 Apr; 83(3):295-301. PubMed ID: 21239041 [TBL] [Abstract][Full Text] [Related]
4. The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability. Zhu J; Gan M; Zhang D; Hu Y; Chai L Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2679-85. PubMed ID: 23623084 [TBL] [Abstract][Full Text] [Related]
5. [Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions]. Zhou SG; Zhou LX; Chen FX Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):367-70. PubMed ID: 17514978 [TBL] [Abstract][Full Text] [Related]
6. [Isolation of Thiobacillus ferrooxidans and its application on heavy metal bioleaching from sewage sludge]. Zhou S; Wang S; Yu S; Zhou L Huan Jing Ke Xue; 2003 May; 24(3):56-60. PubMed ID: 12916203 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Duquesne K; Lebrun S; Casiot C; Bruneel O; Personné JC; Leblanc M; Elbaz-Poulichet F; Morin G; Bonnefoy V Appl Environ Microbiol; 2003 Oct; 69(10):6165-73. PubMed ID: 14532077 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of argentojarosite with simulated bioleaching solutions produced by Acidithiobacillus ferrooxidans. Mukherjee C; Jones FS; Bigham JM; Tuovinen OH Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():164-169. PubMed ID: 27207050 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions. Jones FS; Bigham JM; Gramp JP; Tuovinen OH Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720 [TBL] [Abstract][Full Text] [Related]
10. Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens. Hedrich S; Lünsdorf H; Kleeberg R; Heide G; Seifert J; Schlömann M Environ Sci Technol; 2011 Sep; 45(18):7685-92. PubMed ID: 21838259 [TBL] [Abstract][Full Text] [Related]
11. Effects of chloride acclimation on iron oxyhydroxides and cell morphology during cultivation of Acidithiobacillus ferrooxidans. Xiong H; Guo R Environ Sci Technol; 2011 Jan; 45(1):235-40. PubMed ID: 21128632 [TBL] [Abstract][Full Text] [Related]
12. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil. Yang Z; Wu Z; Liao Y; Liao Q; Yang W; Chai L Chemosphere; 2017 Aug; 181():1-8. PubMed ID: 28414954 [TBL] [Abstract][Full Text] [Related]
13. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater. Liu F; Zhou J; Zhang S; Liu L; Zhou L; Fan W PLoS One; 2015; 10(9):e0138891. PubMed ID: 26398214 [TBL] [Abstract][Full Text] [Related]
14. Sorption of arsenic(V) and arsenic(III) to schwertmannite. Burton ED; Bush RT; Johnston SG; Watling KM; Hocking RK; Sullivan LA; Parker GK Environ Sci Technol; 2009 Dec; 43(24):9202-7. PubMed ID: 19921855 [TBL] [Abstract][Full Text] [Related]
15. Effect of pH regulation on the formation of biogenic schwertmannite driven by Zhou JX; Zhou YJ; Zhang J; Dong Y; Liu FW; Wu ZH; Bi WL; Qin JM Environ Technol; 2022 Oct; 43(24):3706-3718. PubMed ID: 34018903 [TBL] [Abstract][Full Text] [Related]
16. Effects of Fe(II) concentration on the biosynthesis of schwertmannite by Zhang J; Zhou JX; Ji YP; Bi WL; Liu FW Environ Technol; 2023 Nov; 44(27):4147-4156. PubMed ID: 35634972 [TBL] [Abstract][Full Text] [Related]
17. Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents. Dave SR; Gupta KH; Tipre DR Bioresour Technol; 2008 Nov; 99(16):7514-20. PubMed ID: 18367394 [TBL] [Abstract][Full Text] [Related]
18. Bacterial oxidation of ferrous iron at low temperatures. Kupka D; Rzhepishevska OI; Dopson M; Lindström EB; Karnachuk OV; Tuovinen OH Biotechnol Bioeng; 2007 Aug; 97(6):1470-8. PubMed ID: 17304566 [TBL] [Abstract][Full Text] [Related]
19. Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron. Collinet MN; Morin D Antonie Van Leeuwenhoek; 1990 May; 57(4):237-44. PubMed ID: 2191624 [TBL] [Abstract][Full Text] [Related]
20. Arsenic(III) biotransformation to tooeleite associated with the oxidation of Fe(II) via Acidithiobacillus ferrooxidans. Wang X; Li Q; Liao Q; Yan Y; Xia J; Lin Q; Wang Q; Liang Y Chemosphere; 2020 Jun; 248():126080. PubMed ID: 32032883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]