These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 25080005)
1. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors. Guo X; Wang K; He M; Liu Z; Yang H; Li S J Environ Sci (China); 2014 Jul; 26(7):1549-56. PubMed ID: 25080005 [TBL] [Abstract][Full Text] [Related]
2. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement. Salihoglu G; Pinarli V; Salihoglu NK; Karaca G J Environ Manage; 2007 Oct; 85(1):190-7. PubMed ID: 17084503 [TBL] [Abstract][Full Text] [Related]
3. Antimony and arsenic leaching from secondary lead smelter air-pollution-control residues. Ettler V; Mihaljevic M; Sebek O Waste Manag Res; 2010 Jul; 28(7):587-95. PubMed ID: 19723825 [TBL] [Abstract][Full Text] [Related]
4. In situ chemical fixation of arsenic-contaminated soils: an experimental study. Yang L; Donahoe RJ; Redwine JC Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies. Salihoglu G J Air Waste Manag Assoc; 2014 Nov; 64(11):1288-98. PubMed ID: 25509550 [TBL] [Abstract][Full Text] [Related]
6. Arsenic contaminated site at an abandoned copper smelter plant: waste characterization and solidification/stabilization treatment. Shih CJ; Lin CF Chemosphere; 2003 Nov; 53(7):691-703. PubMed ID: 13129509 [TBL] [Abstract][Full Text] [Related]
7. Oral bioaccessibility of inorganic contaminants in waste dusts generated by laterite Ni ore smelting. Ettler V; Polák L; Mihaljevič M; Ratié G; Garnier J; Quantin C Environ Geochem Health; 2018 Oct; 40(5):1699-1712. PubMed ID: 27629409 [TBL] [Abstract][Full Text] [Related]
8. Alkali circulating leaching of arsenic from copper smelter dust based on arsenic-alkali efficient separation. Tian J; Zhang X; Wang Y; Han H; Sun W; Yue T; Sun J J Environ Manage; 2021 Jun; 287():112348. PubMed ID: 33735678 [TBL] [Abstract][Full Text] [Related]
9. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. Jarošíková A; Ettler V; Mihaljevič M; Kříbek B; Mapani B J Environ Manage; 2017 Feb; 187():178-186. PubMed ID: 27889660 [TBL] [Abstract][Full Text] [Related]
10. Iron-calcium reinforced solidification of arsenic alkali residue in geopolymer composite: Wide pH stabilization and its mechanism. Sun Y; Zhang P; Li Z; Chen J; Ke Y; Hu J; Liu B; Yang J; Liang S; Su X; Hou H Chemosphere; 2023 Jan; 312(Pt 2):137063. PubMed ID: 36395889 [TBL] [Abstract][Full Text] [Related]
11. Assessment of industrial by-products as amendments to stabilize antimony mine wastes. Álvarez-Ayuso E; Murciego A J Environ Manage; 2023 Oct; 343():118218. PubMed ID: 37247551 [TBL] [Abstract][Full Text] [Related]
12. Antimony mobility from E-waste plastic in simulated municipal solid waste landfills. Intrakamhaeng V; Clavier KA; Liu Y; Townsend TG Chemosphere; 2020 Feb; 241():125042. PubMed ID: 31606577 [TBL] [Abstract][Full Text] [Related]
13. Leaching properties of electric arc furnace dust prior/following alkaline extraction. Orescanin V; Mikelić L; Sofilić T; Rastovcan-Mioc A; Uzarević K; Medunić G; Elez L; Lulić S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):323-9. PubMed ID: 17365298 [TBL] [Abstract][Full Text] [Related]
14. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs. Savvilotidou V; Hahladakis JN; Gidarakos E Waste Manag; 2015 Nov; 45():314-24. PubMed ID: 26087646 [TBL] [Abstract][Full Text] [Related]
15. Leaching of APC residues from secondary Pb metallurgy using single extraction tests: the mineralogical and the geochemical approach. Ettler V; Mihaljevic M; Sebek O; Strnad L J Hazard Mater; 2005 May; 121(1-3):149-57. PubMed ID: 15885416 [TBL] [Abstract][Full Text] [Related]
17. Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash. Lin KL; Chang CT J Hazard Mater; 2006 Jul; 135(1-3):296-302. PubMed ID: 16406298 [TBL] [Abstract][Full Text] [Related]
18. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. Li YC; Min XB; Chai LY; Shi MQ; Tang CJ; Wang QW; Liang YJ; Lei J; Liyang WJ J Environ Manage; 2016 Oct; 181():756-761. PubMed ID: 27449964 [TBL] [Abstract][Full Text] [Related]
19. Research on the Characteristics and Mechanism of the Cumulative Release of Antimony from an Antimony Smelting Slag Stacking Area under Rainfall Leaching. Ren B; Zhou Y; Hursthouse AS; Deng R J Anal Methods Chem; 2017; 2017():7206876. PubMed ID: 28804669 [TBL] [Abstract][Full Text] [Related]
20. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate. Aydın AA; Aydın A J Hazard Mater; 2014 Apr; 270():35-44. PubMed ID: 24530878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]