These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25080087)

  • 1. Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction.
    Bouain N; Shahzad Z; Rouached A; Khan GA; Berthomieu P; Abdelly C; Poirier Y; Rouached H
    J Exp Bot; 2014 Nov; 65(20):5725-41. PubMed ID: 25080087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate/zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport.
    Bouain N; Kisko M; Rouached A; Dauzat M; Lacombe B; Belgaroui N; Ghnaya T; Davidian JC; Berthomieu P; Abdelly C; Rouached H
    Biomed Res Int; 2014; 2014():548254. PubMed ID: 25025059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tale of two players: the role of phosphate in iron and zinc homeostatic interactions.
    Lay-Pruitt KS; Wang W; Prom-U-Thai C; Pandey A; Zheng L; Rouached H
    Planta; 2022 Jun; 256(2):23. PubMed ID: 35767117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular regulators of phosphate homeostasis in plants.
    Lin WY; Lin SI; Chiou TJ
    J Exp Bot; 2009; 60(5):1427-38. PubMed ID: 19168668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytic acid contributes to the phosphate-zinc signaling crosstalk in Arabidopsis.
    Belgaroui N; El Ifa W; Hanin M
    Plant Physiol Biochem; 2022 Jul; 183():1-8. PubMed ID: 35526500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants.
    Xie X; Hu W; Fan X; Chen H; Tang M
    Front Plant Sci; 2019; 10():1172. PubMed ID: 31616454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of phosphate transport in plants.
    Rausch C; Bucher M
    Planta; 2002 Nov; 216(1):23-37. PubMed ID: 12430011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated homeostasis of essential mineral nutrients: a focus on iron.
    Hanikenne M; Esteves SM; Fanara S; Rouached H
    J Exp Bot; 2021 Mar; 72(6):2136-2153. PubMed ID: 33175167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of phosphate starvation responses in plants: signaling players and cross-talks.
    Rouached H; Arpat AB; Poirier Y
    Mol Plant; 2010 Mar; 3(2):288-99. PubMed ID: 20142416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into plant phosphate sensing and signaling.
    Ham BK; Chen J; Yan Y; Lucas WJ
    Curr Opin Biotechnol; 2018 Feb; 49():1-9. PubMed ID: 28732264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.
    Zhang Z; Liao H; Lucas WJ
    J Integr Plant Biol; 2014 Mar; 56(3):192-220. PubMed ID: 24417933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant resilience to phosphate limitation: current knowledge and future challenges.
    Cho H; Bouain N; Zheng L; Rouached H
    Crit Rev Biotechnol; 2021 Feb; 41(1):63-71. PubMed ID: 33028118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-mediated surveillance of phosphate transporters on the move.
    Liu TY; Lin WY; Huang TK; Chiou TJ
    Trends Plant Sci; 2014 Oct; 19(10):647-55. PubMed ID: 25001521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Talks Between Macro- and Micronutrient Uptake and Signaling in Plants.
    Fan X; Zhou X; Chen H; Tang M; Xie X
    Front Plant Sci; 2021; 12():663477. PubMed ID: 34721446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular aspects of Cu, Fe and Zn homeostasis in plants.
    Grotz N; Guerinot ML
    Biochim Biophys Acta; 2006 Jul; 1763(7):595-608. PubMed ID: 16857279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India.
    Cakmak I
    J Trace Elem Med Biol; 2009; 23(4):281-9. PubMed ID: 19747624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus.
    Yang SY; Lin WY; Hsiao YM; Chiou TJ
    Plant Cell; 2024 May; 36(5):1504-1523. PubMed ID: 38163641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a Discovery of a Zinc-Dependent Phosphate Transport Road in Plants.
    Cho HK; Sandhu J; Bouain N; Prom-U-Thai C; Rouached H
    Plants (Basel); 2022 Nov; 11(22):. PubMed ID: 36432795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Involvement of OsPHO1;1 in the Regulation of Iron Transport Through Integration of Phosphate and Zinc Deficiency Signaling.
    Saenchai C; Bouain N; Kisko M; Prom-U-Thai C; Doumas P; Rouached H
    Front Plant Sci; 2016; 7():396. PubMed ID: 27092147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of ion homeostasis in plants: current approaches and future challenges.
    Rouached H; Secco D; Arpat BA
    Plant Signal Behav; 2010 May; 5(5):501-2. PubMed ID: 20383067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.