BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 25080239)

  • 1. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path.
    Campodonico MA; Andrews BA; Asenjo JA; Palsson BO; Feist AM
    Metab Eng; 2014 Sep; 25():140-58. PubMed ID: 25080239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of genome-scale metabolic network model in metabolic engineering.
    Kim B; Kim WJ; Kim DI; Lee SY
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):339-48. PubMed ID: 25465049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit.
    Gupta A; Reizman IM; Reisch CR; Prather KL
    Nat Biotechnol; 2017 Mar; 35(3):273-279. PubMed ID: 28191902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating enzymatic synthesis of small molecule drugs.
    Moura M; Finkle J; Stainbrook S; Greene J; Broadbelt LJ; Tyo KEJ
    Metab Eng; 2016 Jan; 33():138-147. PubMed ID: 26655066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives.
    Noda S; Shirai T; Oyama S; Kondo A
    Metab Eng; 2016 Jan; 33():119-129. PubMed ID: 26654797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated computational and experimental study for overproducing fatty acids in Escherichia coli.
    Ranganathan S; Tee TW; Chowdhury A; Zomorrodi AR; Yoon JM; Fu Y; Shanks JV; Maranas CD
    Metab Eng; 2012 Nov; 14(6):687-704. PubMed ID: 23036703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli.
    Feist AM; Zielinski DC; Orth JD; Schellenberger J; Herrgard MJ; Palsson BØ
    Metab Eng; 2010 May; 12(3):173-86. PubMed ID: 19840862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion.
    King ZA; O'Brien EJ; Feist AM; Palsson BO
    Metab Eng; 2017 Jan; 39():220-227. PubMed ID: 27986597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A synthetic pathway for the production of 2-hydroxyisovaleric acid in Escherichia coli.
    Cheong S; Clomburg JM; Gonzalez R
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):579-588. PubMed ID: 29330665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints.
    Nigam R; Liang S
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():259-67. PubMed ID: 16447983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico co-factor balance estimation using constraint-based modelling informs metabolic engineering in Escherichia coli.
    de Arroyo Garcia L; Jones PR
    PLoS Comput Biol; 2020 Aug; 16(8):e1008125. PubMed ID: 32776925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Escherichia coli fermentative metabolism.
    Orencio-Trejo M; Utrilla J; Fernández-Sandoval MT; Huerta-Beristain G; Gosset G; Martinez A
    Adv Biochem Eng Biotechnol; 2010; 121():71-107. PubMed ID: 20182928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome-guided parsimonious flux analysis improves predictions with metabolic networks in complex environments.
    Jenior ML; Moutinho TJ; Dougherty BV; Papin JA
    PLoS Comput Biol; 2020 Apr; 16(4):e1007099. PubMed ID: 32298268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli.
    Fang M; Wang T; Zhang C; Bai J; Zheng X; Zhao X; Lou C; Xing XH
    Metab Eng; 2016 Jan; 33():41-51. PubMed ID: 26506462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and application of efficient pathway enumeration algorithms for metabolic engineering applications.
    Liu F; Vilaça P; Rocha I; Rocha M
    Comput Methods Programs Biomed; 2015 Feb; 118(2):134-46. PubMed ID: 25580014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico deletion of PtsG gene in Escherichia coli genome-scale model predicts increased succinate production from glycerol.
    Mienda BS; Shamsir MS
    J Biomol Struct Dyn; 2015; 33(11):2380-9. PubMed ID: 25921851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.