These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 25080239)

  • 21. Predicting internal cell fluxes at sub-optimal growth.
    Schultz A; Qutub AA
    BMC Syst Biol; 2015 Apr; 9():18. PubMed ID: 25890056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.
    Shen CR; Liao JC
    Metab Eng; 2013 May; 17():12-22. PubMed ID: 23376654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating metabolite essentiality through genome-scale analysis of Escherichia coli production capabilities.
    Imieliński M; Belta C; Halász A; Rubin H
    Bioinformatics; 2005 May; 21(9):2008-16. PubMed ID: 15671116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.
    Tan GY; Liu T
    Metab Eng; 2017 Jan; 39():228-236. PubMed ID: 28013086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Escherichia coli genome-scale metabolic gene knockout of lactate dehydrogenase (ldhA), increases succinate production from glycerol.
    Mienda BS
    J Biomol Struct Dyn; 2018 Nov; 36(14):3680-3686. PubMed ID: 29057718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes.
    Arakawa K; Yamada Y; Shinoda K; Nakayama Y; Tomita M
    BMC Bioinformatics; 2006 Mar; 7():168. PubMed ID: 16553966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways.
    Lee Y; Lafontaine Rivera JG; Liao JC
    Metab Eng; 2014 Sep; 25():63-71. PubMed ID: 24972370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A graph-based approach to analyze flux-balanced pathways in metabolic networks.
    Arabzadeh M; Saheb Zamani M; Sedighi M; Marashi SA
    Biosystems; 2018 Mar; 165():40-51. PubMed ID: 29337084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Method to Constrain Genome-Scale Models with 13C Labeling Data.
    Martín HG; Kumar VS; Weaver D; Ghosh A; Chubukov V; Mukhopadhyay A; Arkin A; Keasling JD
    PLoS Comput Biol; 2015 Sep; 11(9):e1004363. PubMed ID: 26379153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.
    Kim S; Cheong S; Gonzalez R
    Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization.
    Sánchez BJ; Pérez-Correa JR; Agosin E
    Metab Eng; 2014 Sep; 25():159-73. PubMed ID: 25046158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing microbial communities to maximize the thermodynamic driving force for the production of chemicals.
    Bekiaris PS; Klamt S
    PLoS Comput Biol; 2021 Jun; 17(6):e1009093. PubMed ID: 34129600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by
    Gonzalez JE; Long CP; Antoniewicz MR
    Metab Eng; 2017 Jan; 39():9-18. PubMed ID: 27840237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli.
    Pitera DJ; Paddon CJ; Newman JD; Keasling JD
    Metab Eng; 2007 Mar; 9(2):193-207. PubMed ID: 17239639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids.
    Kassab E; Fuchs M; Haack M; Mehlmer N; Brueck TB
    Microb Cell Fact; 2019 Oct; 18(1):163. PubMed ID: 31581944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering metabolic systems for production of advanced fuels.
    Yan Y; Liao JC
    J Ind Microbiol Biotechnol; 2009 Apr; 36(4):471-9. PubMed ID: 19198907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards creating an extended metabolic model (EMM) for E. coli using enzyme promiscuity prediction and metabolomics data.
    Amin SA; Chavez E; Porokhin V; Nair NU; Hassoun S
    Microb Cell Fact; 2019 Jun; 18(1):109. PubMed ID: 31196115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering E. coli for large-scale production - Strategies considering ATP expenses and transcriptional responses.
    Löffler M; Simen JD; Jäger G; Schäferhoff K; Freund A; Takors R
    Metab Eng; 2016 Nov; 38():73-85. PubMed ID: 27378496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae.
    Boghigian BA; Lee K; Pfeifer BA
    J Theor Biol; 2010 Jan; 262(2):197-207. PubMed ID: 19833139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.