These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25080278)

  • 21. Two omega method for active thermocouple microscopy.
    Thiery L; Gavignet E; Cretin B
    Rev Sci Instrum; 2009 Mar; 80(3):034901. PubMed ID: 19334942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into Laser Ablation Processes of Heterogeneous Samples: Toward Analysis of Through-Silicon-Vias.
    Moreno-García P; Grimaudo V; Riedo A; Cedeño López A; Wiesendanger R; Tulej M; Gruber C; Lörtscher E; Wurz P; Broekmann P
    Anal Chem; 2018 Jun; 90(11):6666-6674. PubMed ID: 29722528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and Electrical Characterization of High Aspect Ratio Through-Silicon Vias with Polyimide Liner for 3D Integration.
    Chen X; Chen Z; Xiao L; Hao Y; Wang H; Ding Y; Zhang Z
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical integrity of a carbon nanotube/copper-based through-silicon via for 3D integrated circuits: a multi-scale modeling approach.
    Awad I; Ladani L
    Nanotechnology; 2015 Dec; 26(48):485705. PubMed ID: 26559788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air.
    Kim K; Chung J; Hwang G; Kwon O; Lee JS
    ACS Nano; 2011 Nov; 5(11):8700-9. PubMed ID: 21999681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electromagnetic analysis for optical coherence tomography based through silicon vias metrology.
    Iff WA; Hugonin JP; Sauvan C; Besbes M; Chavel P; Vienne G; Milord L; Alliata D; Herth E; Coste P; Bosseboeuf A
    Appl Opt; 2019 Sep; 58(27):7472-7488. PubMed ID: 31674397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and Optimization of High Aspect Ratio Through-Silicon-Vias Electroplating for 3D Inductor.
    Li H; Liu J; Xu T; Xia J; Tan X; Tao Z
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative Characterization of Local Thermal Properties in Thermoelectric Ceramics Using "Jumping-Mode" Scanning Thermal Microscopy.
    Alikin D; Zakharchuk K; Xie W; Romanyuk K; Pereira MJ; Arias-Serrano BI; Weidenkaff A; Kholkin A; Kovalevsky AV; Tselev A
    Small Methods; 2023 Apr; 7(4):e2201516. PubMed ID: 36775977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range.
    Meckenstock R
    Rev Sci Instrum; 2008 Apr; 79(4):041101. PubMed ID: 18447516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pico-Watt Scanning Thermal Microscopy for Thermal Energy Transport Investigation in Atomic Materials.
    Koo S; Park J; Kim K
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy.
    Ge Y; Zhang Y; Weaver JMR; Dobson PS
    Nanotechnology; 2017 Dec; 28(48):485706. PubMed ID: 29035274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Michelangelo step: removing scalloping and tapering effects in high aspect ratio through silicon vias.
    Frasca S; Leghziel RC; Arabadzhiev IN; Pasquier B; Tomassi GFM; Carrara S; Charbon E
    Sci Rep; 2021 Feb; 11(1):3997. PubMed ID: 33597624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative temperature distribution measurements by non-contact scanning thermal microscopy using Wollaston probes under ambient conditions.
    Zhang Y; Zhu W; Han L; Borca-Tasciuc T
    Rev Sci Instrum; 2020 Jan; 91(1):014901. PubMed ID: 32012522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bottom-Up Copper Filling of Millimeter Size Through Silicon Vias.
    Josell D; Menk LA; Hollowell AE; Blain M; Moffat TP
    J Electrochem Soc; 2019; 166(1):. PubMed ID: 33041355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy.
    Hwang G; Kwon O
    Nanoscale; 2016 Mar; 8(9):5280-90. PubMed ID: 26880606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of probe-sample interactions of a scanning thermal microscope using a nanofabricated calibration sample having programmable size.
    Ge Y; Zhang Y; Booth JA; Weaver JM; Dobson PS
    Nanotechnology; 2016 Aug; 27(32):325503. PubMed ID: 27363896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A sub-atmospheric chemical vapor deposition process for deposition of oxide liner in high aspect ratio through silicon vias.
    Lisker M; Marschmeyer S; Kaynak M; Tekin I
    J Nanosci Nanotechnol; 2011 Sep; 11(9):8061-7. PubMed ID: 22097530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy.
    Tovee PD; Kolosov OV
    Nanotechnology; 2013 Nov; 24(46):465706. PubMed ID: 24164803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A low-cost concurrent TSV test architecture with lossless test output compression scheme.
    Lee YW; Lim H; Seo S; Cho K; Kang S
    PLoS One; 2019; 14(8):e0221043. PubMed ID: 31442246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.