These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1163 related articles for article (PubMed ID: 25080384)
1. Anchoring noble metal nanoparticles on CeO2 modified reduced graphene oxide nanosheets and their enhanced catalytic properties. Ji Z; Shen X; Xu Y; Zhu G; Chen K J Colloid Interface Sci; 2014 Oct; 432():57-64. PubMed ID: 25080384 [TBL] [Abstract][Full Text] [Related]
2. CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells. Yu X; Kuai L; Geng B Nanoscale; 2012 Sep; 4(18):5738-43. PubMed ID: 22893017 [TBL] [Abstract][Full Text] [Related]
3. Design of an ultrasmall Au nanocluster-CeO2 mesoporous nanocomposite catalyst for nitrobenzene reduction. Chong H; Li P; Xiang J; Fu F; Zhang D; Ran X; Zhu M Nanoscale; 2013 Aug; 5(16):7622-8. PubMed ID: 23842689 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide. Kim SH; Jeong GH; Choi D; Yoon S; Jeon HB; Lee SM; Kim SW J Colloid Interface Sci; 2013 Jan; 389(1):85-90. PubMed ID: 23026300 [TBL] [Abstract][Full Text] [Related]
5. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Huang J; Zhang L; Chen B; Ji N; Chen F; Zhang Y; Zhang Z Nanoscale; 2010 Dec; 2(12):2733-8. PubMed ID: 20936236 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties. Ji Z; Shen X; Li M; Zhou H; Zhu G; Chen K Nanotechnology; 2013 Mar; 24(11):115603. PubMed ID: 23448977 [TBL] [Abstract][Full Text] [Related]
7. One-Pot Facile Synthesis of Noble Metal Nanoparticles Supported on rGO with Enhanced Catalytic Performance for 4-Nitrophenol Reduction. Zhang X; Jin S; Zhang Y; Wang L; Liu Y; Duan Q Molecules; 2021 Nov; 26(23):. PubMed ID: 34885841 [TBL] [Abstract][Full Text] [Related]
8. In situ preparation, characterization, magnetic and catalytic studies of surfactant free RGO/Fe(x)Co(100-x) nanocomposites. Chen F; Xi P; Ma C; Shao C; Wang J; Wang S; Liu G; Zeng Z Dalton Trans; 2013 Jun; 42(22):7936-42. PubMed ID: 23403735 [TBL] [Abstract][Full Text] [Related]
9. Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity. Ji Z; Shen X; Yue X; Zhou H; Yang J; Wang Y; Ma L; Chen K J Colloid Interface Sci; 2015 Dec; 459():79-85. PubMed ID: 26263498 [TBL] [Abstract][Full Text] [Related]
10. Facile Synthesis of Platinum-Cerium(IV) Oxide Hybrids Arched on Reduced Graphene Oxide Catalyst in Reverse Micelles with High Activity and Durability for Hydrolysis of Ammonia Borane. Yao Q; Shi Y; Zhang X; Chen X; Lu ZH Chem Asian J; 2016 Nov; 11(22):3251-3257. PubMed ID: 27662426 [TBL] [Abstract][Full Text] [Related]
11. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties. Xiang G; He J; Li T; Zhuang J; Wang X Nanoscale; 2011 Sep; 3(9):3737-42. PubMed ID: 21804982 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. Yin H; Tang H; Wang D; Gao Y; Tang Z ACS Nano; 2012 Sep; 6(9):8288-97. PubMed ID: 22931045 [TBL] [Abstract][Full Text] [Related]
13. Shape-controlled ceria-reduced graphene oxide nanocomposites toward high-sensitive in situ detection of nitric oxide. Hu FX; Xie JL; Bao SJ; Yu L; Li CM Biosens Bioelectron; 2015 Aug; 70():310-7. PubMed ID: 25840016 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. Wu S; He Q; Zhou C; Qi X; Huang X; Yin Z; Yang Y; Zhang H Nanoscale; 2012 Apr; 4(7):2478-83. PubMed ID: 22388949 [TBL] [Abstract][Full Text] [Related]
15. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152 [TBL] [Abstract][Full Text] [Related]
16. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Zhang J; Chen G; Guay D; Chaker M; Ma D Nanoscale; 2014 Feb; 6(4):2125-30. PubMed ID: 24217271 [TBL] [Abstract][Full Text] [Related]
17. Β-cyclodextrin polymer as a linker to fabricate ternary nanocomposites AuNPs/pATP-β-CDP/rGO and their electrochemical application. Chen M; Shen X; Liu P; Wei Y; Meng Y; Zheng G; Diao G Carbohydr Polym; 2015 Mar; 119():26-34. PubMed ID: 25563941 [TBL] [Abstract][Full Text] [Related]
18. Pt nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol. Wang D; Niu W; Tan M; Wu M; Zheng X; Li Y; Tsubaki N ChemSusChem; 2014 May; 7(5):1398-406. PubMed ID: 24648252 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active Au@Pt core/shell nanoparticles. Zhu F; Zhao G; Dou W Mikrochim Acta; 2018 Sep; 185(10):455. PubMed ID: 30215173 [TBL] [Abstract][Full Text] [Related]
20. Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS. Liang X; You T; Liu D; Lang X; Tan E; Shi J; Yin P; Guo L Phys Chem Chem Phys; 2015 Apr; 17(15):10176-81. PubMed ID: 25793752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]