BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25080501)

  • 41. Effects of endurance training under calorie restriction on energy substrate metabolism in mouse skeletal muscle and liver.
    Takahashi K; Kitaoka Y; Hatta H
    J Physiol Sci; 2024 Jun; 74(1):32. PubMed ID: 38849720
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation.
    Chang H; Kwon O; Shin MS; Kang GM; Leem YH; Lee CH; Kim SJ; Roh E; Kim HK; Youn BS; Kim MS
    J Appl Physiol (1985); 2018 Sep; 125(3):715-722. PubMed ID: 29952246
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exercise training increases mitochondrial biogenesis in the brain.
    Steiner JL; Murphy EA; McClellan JL; Carmichael MD; Davis JM
    J Appl Physiol (1985); 2011 Oct; 111(4):1066-71. PubMed ID: 21817111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Housing temperature affects the acute and chronic metabolic adaptations to exercise in mice.
    McKie GL; Medak KD; Knuth CM; Shamshoum H; Townsend LK; Peppler WT; Wright DC
    J Physiol; 2019 Sep; 597(17):4581-4600. PubMed ID: 31297830
    [TBL] [Abstract][Full Text] [Related]  

  • 45. β
    Azevedo Voltarelli V; Coronado M; Gonçalves Fernandes L; Cruz Campos J; Jannig PR; Batista Ferreira JC; Fajardo G; Chakur Brum P; Bernstein D
    Cells; 2021 Jan; 10(1):. PubMed ID: 33450889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle.
    Leick L; Wojtaszewski JF; Johansen ST; Kiilerich K; Comes G; Hellsten Y; Hidalgo J; Pilegaard H
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E463-74. PubMed ID: 18073319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adaptation of motor unit contractile properties in rat medial gastrocnemius to treadmill endurance training: Relationship to muscle mitochondrial biogenesis.
    Kryściak K; Majerczak J; Kryściak J; Łochyński D; Kaczmarek D; Drzymała-Celichowska H; Krutki P; Gawedzka A; Guzik M; Korostynski M; Szkutnik Z; Pyza E; Jarmuszkiewicz W; Zoladz JA; Celichowski J
    PLoS One; 2018; 13(4):e0195704. PubMed ID: 29672614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals.
    Vissing K; McGee S; Farup J; Kjølhede T; Vendelbo M; Jessen N
    Scand J Med Sci Sports; 2013 Jun; 23(3):355-66. PubMed ID: 23802289
    [TBL] [Abstract][Full Text] [Related]  

  • 49. No Superior Adaptations to Carbohydrate Periodization in Elite Endurance Athletes.
    Gejl KD; Thams LB; Hansen M; Rokkedal-Lausch T; Plomgaard P; Nybo L; Larsen FJ; Cardinale DA; Jensen K; Holmberg HC; Vissing K; Ørtenblad N
    Med Sci Sports Exerc; 2017 Dec; 49(12):2486-2497. PubMed ID: 28723843
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise.
    Yu M; Stepto NK; Chibalin AV; Fryer LG; Carling D; Krook A; Hawley JA; Zierath JR
    J Physiol; 2003 Jan; 546(Pt 2):327-35. PubMed ID: 12527721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Role of p53 in Determining Mitochondrial Adaptations to Endurance Training in Skeletal Muscle.
    Beyfuss K; Erlich AT; Triolo M; Hood DA
    Sci Rep; 2018 Oct; 8(1):14710. PubMed ID: 30279494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oral Lactate Administration Additively Enhances Endurance Training-Induced Increase in Cytochrome C Oxidase Activity in Mouse Soleus Muscle.
    Takahashi K; Kitaoka Y; Yamamoto K; Matsunaga Y; Hatta H
    Nutrients; 2020 Mar; 12(3):. PubMed ID: 32183387
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AMPK-α2 is involved in exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following high-fat diet.
    Abbott MJ; Turcotte LP
    J Appl Physiol (1985); 2014 Oct; 117(8):869-79. PubMed ID: 25103967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Different timing of changes in mitochondrial functions following endurance training.
    Daussin FN; Rasseneur L; Bouitbir J; Charles AL; Dufour SP; Geny B; Burelle Y; Richard R
    Med Sci Sports Exerc; 2012 Feb; 44(2):217-24. PubMed ID: 21716149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptations of skeletal muscle to prolonged, intense endurance training.
    Hawley JA
    Clin Exp Pharmacol Physiol; 2002 Mar; 29(3):218-22. PubMed ID: 11906487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle.
    Benziane B; Burton TJ; Scanlan B; Galuska D; Canny BJ; Chibalin AV; Zierath JR; Stepto NK
    Am J Physiol Endocrinol Metab; 2008 Dec; 295(6):E1427-38. PubMed ID: 18827172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle.
    Fentz J; Kjøbsted R; Kristensen CM; Hingst JR; Birk JB; Gudiksen A; Foretz M; Schjerling P; Viollet B; Pilegaard H; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2015 Dec; 309(11):E900-14. PubMed ID: 26419588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
    Jørgensen SB; Wojtaszewski JF; Viollet B; Andreelli F; Birk JB; Hellsten Y; Schjerling P; Vaulont S; Neufer PD; Richter EA; Pilegaard H
    FASEB J; 2005 Jul; 19(9):1146-8. PubMed ID: 15878932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance.
    Fiorenza M; Lemminger AK; Marker M; Eibye K; Iaia FM; Bangsbo J; Hostrup M
    FASEB J; 2019 Aug; 33(8):8976-8989. PubMed ID: 31136218
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice.
    Ng SY; Mikhail A; Ljubicic V
    J Physiol; 2019 Sep; 597(18):4757-4778. PubMed ID: 31361024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.