BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25080597)

  • 1. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation.
    Biddinger JE; Fox EA
    J Neurosci; 2014 Jul; 34(31):10379-93. PubMed ID: 25080597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
    Fox EA
    Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased short-term food satiation and sensitivity to cholecystokinin in neurotrophin-4 knock-in mice.
    Chi MM; Fan G; Fox EA
    Am J Physiol Regul Integr Comp Physiol; 2004 Nov; 287(5):R1044-53. PubMed ID: 15297267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety.
    Fox EA; Phillips RJ; Baronowsky EA; Byerly MS; Jones S; Powley TL
    J Neurosci; 2001 Nov; 21(21):8602-15. PubMed ID: 11606648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation.
    Fox EA; Biddinger JE; Baquet ZC; Jones KR; McAdams J
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(11):R1307-22. PubMed ID: 24068045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors regulating vagal sensory development: potential role in obesities of developmental origin.
    Fox EA; Murphy MC
    Physiol Behav; 2008 Apr; 94(1):90-104. PubMed ID: 18234244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation.
    Murphy MC; Fox EA
    J Comp Neurol; 2010 Aug; 518(15):2934-51. PubMed ID: 20533354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.
    Fox EA; Biddinger JE; Jones KR; McAdams J; Worman A
    Neuroscience; 2013 Jan; 229():176-99. PubMed ID: 23069761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term regeneration of abdominal vagus: efferents fail while afferents succeed.
    Phillips RJ; Baronowsky EA; Powley TL
    J Comp Neurol; 2003 Jan; 455(2):222-37. PubMed ID: 12454987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early postnatal overnutrition: potential roles of gastrointestinal vagal afferents and brain-derived neurotrophic factor.
    Fox EA; Biddinger JE
    Physiol Behav; 2012 Jun; 106(3):400-12. PubMed ID: 22712064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of brain-derived neurotrophic factor enhances sensory innervation and selectively increases neuron number.
    LeMaster AM; Krimm RF; Davis BM; Noel T; Forbes ME; Johnson JE; Albers KM
    J Neurosci; 1999 Jul; 19(14):5919-31. PubMed ID: 10407031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NT-4-deficient mice lack sensitivity to meal-associated preabsorptive feedback from lipids.
    Chi MM; Powley TL
    Am J Physiol Regul Integr Comp Physiol; 2007 Jun; 292(6):R2124-35. PubMed ID: 17303678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-fat hyperphagia in neurotrophin-4 deficient mice reveals potential role of vagal intestinal sensory innervation in long-term controls of food intake.
    Byerly MS; Fox EA
    Neurosci Lett; 2006 Jun; 400(3):240-5. PubMed ID: 16530962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.
    Biddinger JE; Fox EA
    Physiol Behav; 2010 Aug; 101(1):184-91. PubMed ID: 20403369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo.
    Erickson JT; Brosenitsch TA; Katz DM
    J Neurosci; 2001 Jan; 21(2):581-9. PubMed ID: 11160437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand.
    Fox EA; Phillips RJ; Byerly MS; Baronowsky EA; Chi MM; Powley TL
    Anat Embryol (Berl); 2002 Jul; 205(4):325-42. PubMed ID: 12136263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vagal afferent controls of feeding: a possible role for gastrointestinal BDNF.
    Fox EA
    Clin Auton Res; 2013 Feb; 23(1):15-31. PubMed ID: 22717678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducible nitric oxide synthase-derived nitric oxide reduces vagal satiety signalling in obese mice.
    Yu Y; Park SJ; Beyak MJ
    J Physiol; 2019 Mar; 597(6):1487-1502. PubMed ID: 30565225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cranial sensory neuron development in the absence of brain-derived neurotrophic factor in BDNF/Bax double null mice.
    Hellard D; Brosenitsch T; Fritzsch B; Katz DM
    Dev Biol; 2004 Nov; 275(1):34-43. PubMed ID: 15464571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced vagal sensory innervation of the small intestinal myenteric plexus following capsaicin treatment of adult rats.
    Jagger A; Grahn J; Ritter RC
    Neurosci Lett; 1997 Oct; 236(2):103-6. PubMed ID: 9404822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.