These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25080993)

  • 21. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PreHom-PCLM: protein remote homology detection by combing motifs and protein cubic language model.
    Shao J; Zhang Q; Yan K; Liu B
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37833837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein remote homology detection based on auto-cross covariance transformation.
    Liu X; Zhao L; Dong Q
    Comput Biol Med; 2011 Aug; 41(8):640-7. PubMed ID: 21664609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soft Ngram Representation and Modeling for Protein Remote Homology Detection.
    Lovato P; Cristani M; Bicego M
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1482-1488. PubMed ID: 27483459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On single and multiple models of protein families for the detection of remote sequence relationships.
    Casbon JA; Saqi MA
    BMC Bioinformatics; 2006 Jan; 7():48. PubMed ID: 16448555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated alphabet reduction for protein datasets.
    Bacardit J; Stout M; Hirst JD; Valencia A; Smith RE; Krasnogor N
    BMC Bioinformatics; 2009 Jan; 10():6. PubMed ID: 19126227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reducing dimensionality in remote homology detection using predicted contact maps.
    Bedoya O; Tischer I
    Comput Biol Med; 2015 Apr; 59():64-72. PubMed ID: 25679476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MRFalign: protein homology detection through alignment of Markov random fields.
    Ma J; Wang S; Wang Z; Xu J
    PLoS Comput Biol; 2014 Mar; 10(3):e1003500. PubMed ID: 24675572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EvDTree: structure-dependent substitution profiles based on decision tree classification of 3D environments.
    Gelly JC; Chiche L; Gracy J
    BMC Bioinformatics; 2005 Jan; 6():4. PubMed ID: 15638949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Building maps of protein structure spaces in template-free protein structure prediction.
    Zaman AB; Shehu A
    J Bioinform Comput Biol; 2019 Dec; 17(6):1940013. PubMed ID: 32019408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinearities in protein space limit the utility of informatics in protein biophysics.
    Rackovsky S
    Proteins; 2015 Nov; 83(11):1923-8. PubMed ID: 26315852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated detection of remote homology.
    Dietmann S; Fernandez-Fuentes N; Holm L
    Curr Opin Struct Biol; 2002 Jun; 12(3):362-7. PubMed ID: 12127456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting remote evolutionary relationships among proteins by large-scale semantic embedding.
    Melvin I; Weston J; Noble WS; Leslie C
    PLoS Comput Biol; 2011 Jan; 7(1):e1001047. PubMed ID: 21298082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures.
    Zhou H; Zhou Y
    Bioinformatics; 2005 Sep; 21(18):3615-21. PubMed ID: 16020471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the efficacy of a structure-derived amino acid substitution matrix in detecting protein homologs by BLAST and PSI-BLAST.
    Goonesekere NC
    Adv Appl Bioinform Chem; 2009; 2():71-8. PubMed ID: 21918617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Type II restriction endonuclease R.Hpy188I belongs to the GIY-YIG nuclease superfamily, but exhibits an unusual active site.
    Kaminska KH; Kawai M; Boniecki M; Kobayashi I; Bujnicki JM
    BMC Struct Biol; 2008 Nov; 8():48. PubMed ID: 19014591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovering Thematically Coherent Biomedical Documents Using Contextualized Bidirectional Encoder Representations from Transformers-Based Clustering.
    Davagdorj K; Wang L; Li M; Pham VH; Ryu KH; Theera-Umpon N
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporating homologues into sequence embeddings for protein analysis.
    Eskin E; Snir S
    J Bioinform Comput Biol; 2007 Jun; 5(3):717-38. PubMed ID: 17688313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DBAli tools: mining the protein structure space.
    Marti-Renom MA; Pieper U; Madhusudhan MS; Rossi A; Eswar N; Davis FP; Al-Shahrour F; Dopazo J; Sali A
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W393-7. PubMed ID: 17478513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.