BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25081003)

  • 1. Groundwater-surface water interactions in the hyporheic zone under climate change scenarios.
    Zhou S; Yuan X; Peng S; Yue J; Wang X; Liu H; Williams DD
    Environ Sci Pollut Res Int; 2014 Dec; 21(24):13943-55. PubMed ID: 25081003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of microbiotic patterns reveal surface water groundwater interactions in intermittent and perennial streams.
    Korbel KL; Rutlidge H; Hose GC; Eberhard SM; Andersen MS
    Sci Total Environ; 2022 Mar; 811():152380. PubMed ID: 34914978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrobiogechemical interactions in the hyporheic zone of a sulfate-impacted, freshwater stream and riparian wetland ecosystem.
    Torgeson JM; Rosenfeld CE; Dunshee AJ; Duhn K; Schmitter R; O'Hara PA; Ng GHC; Santelli CM
    Environ Sci Process Impacts; 2022 Sep; 24(9):1360-1382. PubMed ID: 35661843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hyporheic zone and its functions: revision and research status in Neotropical regions.
    Mugnai R; Messana G; Di Lorenzo T
    Braz J Biol; 2015 Aug; 75(3):524-34. PubMed ID: 26421769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of mining-derived pollutants in the hyporheic zone: a review.
    Gandy CJ; Smith JW; Jarvis AP
    Sci Total Environ; 2007 Feb; 373(2-3):435-46. PubMed ID: 17173955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains.
    Guevara-Ochoa C; Medina-Sierra A; Vives L
    Sci Total Environ; 2020 Jun; 722():137886. PubMed ID: 32208258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor.
    Stern N; Ginder-Vogel M; Stegen JC; Arntzen E; Kennedy DW; Larget BR; Roden EE
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human impacts on the stream-groundwater exchange zone.
    Hancock PJ
    Environ Manage; 2002 Jun; 29(6):763-81. PubMed ID: 11992170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DOM accumulation in the hyporheic zone promotes geogenic Fe mobility: A laboratory column study.
    Xia X; Yue W; Zhai Y; Teng Y
    Sci Total Environ; 2023 Oct; 896():165140. PubMed ID: 37391144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Wang Y; Yang P; Ren S; He X; Wei C; Wang S; Xu Y; Xu Z; Zhang Y; Ismail H
    Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31349697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession.
    Malzone JM; Lowry CS
    Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biogeochemical responses of hyporheic groundwater to the long-run managed aquifer recharge: Linking microbial communities to hydrochemistry and micropollutants.
    Li S; Li B; Liu H; Qi W; Yang Y; Yu G; Qu J
    J Hazard Mater; 2022 Jun; 431():128587. PubMed ID: 35255336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.
    Freitas JG; Rivett MO; Roche RS; Durrant NeƩ Cleverly M; Walker C; Tellam JH
    Sci Total Environ; 2015 Feb; 505():236-52. PubMed ID: 25461025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyporheic Interactions Increase Zinc Exposure and Effects on Hyalella azteca in Sediments under Flow-Through Conditions.
    Harrison AM; Hudson ML; Burton GA
    Environ Toxicol Chem; 2019 Nov; 38(11):2447-2458. PubMed ID: 31369691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When trends intersect: The challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios.
    Davis J; O'Grady AP; Dale A; Arthington AH; Gell PA; Driver PD; Bond N; Casanova M; Finlayson M; Watts RJ; Capon SJ; Nagelkerken I; Tingley R; Fry B; Page TJ; Specht A
    Sci Total Environ; 2015 Nov; 534():65-78. PubMed ID: 25864797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change.
    Davis J; Pavlova A; Thompson R; Sunnucks P
    Glob Chang Biol; 2013 Jul; 19(7):1970-84. PubMed ID: 23526791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen retention in headwater streams: the influence of groundwater-surface water exchange.
    Thomas SA; Valett HM; Mulholland PJ; Fellows CS; Webster JR; Dahm CN; Peterson CG
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():623-31. PubMed ID: 12805817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconceptualizing the hyporheic zone for nonperennial rivers and streams.
    DelVecchia AG; Shanafield M; Zimmer MA; Busch MH; Krabbenhoft CA; Stubbington R; Kaiser KE; Burrows RM; Hosen J; Datry T; Kampf SK; Zipper SC; Fritz K; Costigan K; Allen DC
    Freshw Sci; 2022 Apr; 41(2):167-182. PubMed ID: 35846249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GW/SW-MST: A Groundwater/Surface-Water Method Selection Tool.
    Hammett S; Day-Lewis FD; Trottier B; Barlow PM; Briggs MA; Delin G; Harvey JW; Johnson CD; Lane JW; Rosenberry DO; Werkema DD
    Ground Water; 2022 Nov; 60(6):784-791. PubMed ID: 35293621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the transitory groundwater-surface water interaction and its environmental consequence of a riverside karst pool.
    Jiang G; Guo F; Wei L; Li W
    Sci Total Environ; 2023 Dec; 902():166532. PubMed ID: 37625732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.