These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 25081003)
1. Groundwater-surface water interactions in the hyporheic zone under climate change scenarios. Zhou S; Yuan X; Peng S; Yue J; Wang X; Liu H; Williams DD Environ Sci Pollut Res Int; 2014 Dec; 21(24):13943-55. PubMed ID: 25081003 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of microbiotic patterns reveal surface water groundwater interactions in intermittent and perennial streams. Korbel KL; Rutlidge H; Hose GC; Eberhard SM; Andersen MS Sci Total Environ; 2022 Mar; 811():152380. PubMed ID: 34914978 [TBL] [Abstract][Full Text] [Related]
3. Hydrobiogechemical interactions in the hyporheic zone of a sulfate-impacted, freshwater stream and riparian wetland ecosystem. Torgeson JM; Rosenfeld CE; Dunshee AJ; Duhn K; Schmitter R; O'Hara PA; Ng GHC; Santelli CM Environ Sci Process Impacts; 2022 Sep; 24(9):1360-1382. PubMed ID: 35661843 [TBL] [Abstract][Full Text] [Related]
4. The hyporheic zone and its functions: revision and research status in Neotropical regions. Mugnai R; Messana G; Di Lorenzo T Braz J Biol; 2015 Aug; 75(3):524-34. PubMed ID: 26421769 [TBL] [Abstract][Full Text] [Related]
5. Attenuation of mining-derived pollutants in the hyporheic zone: a review. Gandy CJ; Smith JW; Jarvis AP Sci Total Environ; 2007 Feb; 373(2-3):435-46. PubMed ID: 17173955 [TBL] [Abstract][Full Text] [Related]
6. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains. Guevara-Ochoa C; Medina-Sierra A; Vives L Sci Total Environ; 2020 Jun; 722():137886. PubMed ID: 32208258 [TBL] [Abstract][Full Text] [Related]
7. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor. Stern N; Ginder-Vogel M; Stegen JC; Arntzen E; Kennedy DW; Larget BR; Roden EE Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600318 [TBL] [Abstract][Full Text] [Related]
8. Human impacts on the stream-groundwater exchange zone. Hancock PJ Environ Manage; 2002 Jun; 29(6):763-81. PubMed ID: 11992170 [TBL] [Abstract][Full Text] [Related]
9. DOM accumulation in the hyporheic zone promotes geogenic Fe mobility: A laboratory column study. Xia X; Yue W; Zhai Y; Teng Y Sci Total Environ; 2023 Oct; 896():165140. PubMed ID: 37391144 [TBL] [Abstract][Full Text] [Related]
10. CO Wang Y; Yang P; Ren S; He X; Wei C; Wang S; Xu Y; Xu Z; Zhang Y; Ismail H Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31349697 [TBL] [Abstract][Full Text] [Related]
11. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession. Malzone JM; Lowry CS Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212 [TBL] [Abstract][Full Text] [Related]
12. The biogeochemical responses of hyporheic groundwater to the long-run managed aquifer recharge: Linking microbial communities to hydrochemistry and micropollutants. Li S; Li B; Liu H; Qi W; Yang Y; Yu G; Qu J J Hazard Mater; 2022 Jun; 431():128587. PubMed ID: 35255336 [TBL] [Abstract][Full Text] [Related]
14. Hyporheic Interactions Increase Zinc Exposure and Effects on Hyalella azteca in Sediments under Flow-Through Conditions. Harrison AM; Hudson ML; Burton GA Environ Toxicol Chem; 2019 Nov; 38(11):2447-2458. PubMed ID: 31369691 [TBL] [Abstract][Full Text] [Related]
15. When trends intersect: The challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Davis J; O'Grady AP; Dale A; Arthington AH; Gell PA; Driver PD; Bond N; Casanova M; Finlayson M; Watts RJ; Capon SJ; Nagelkerken I; Tingley R; Fry B; Page TJ; Specht A Sci Total Environ; 2015 Nov; 534():65-78. PubMed ID: 25864797 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Davis J; Pavlova A; Thompson R; Sunnucks P Glob Chang Biol; 2013 Jul; 19(7):1970-84. PubMed ID: 23526791 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen retention in headwater streams: the influence of groundwater-surface water exchange. Thomas SA; Valett HM; Mulholland PJ; Fellows CS; Webster JR; Dahm CN; Peterson CG ScientificWorldJournal; 2001 Nov; 1 Suppl 2():623-31. PubMed ID: 12805817 [TBL] [Abstract][Full Text] [Related]
18. Reconceptualizing the hyporheic zone for nonperennial rivers and streams. DelVecchia AG; Shanafield M; Zimmer MA; Busch MH; Krabbenhoft CA; Stubbington R; Kaiser KE; Burrows RM; Hosen J; Datry T; Kampf SK; Zipper SC; Fritz K; Costigan K; Allen DC Freshw Sci; 2022 Apr; 41(2):167-182. PubMed ID: 35846249 [TBL] [Abstract][Full Text] [Related]
19. Characterizing the transitory groundwater-surface water interaction and its environmental consequence of a riverside karst pool. Jiang G; Guo F; Wei L; Li W Sci Total Environ; 2023 Dec; 902():166532. PubMed ID: 37625732 [TBL] [Abstract][Full Text] [Related]