These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25081480)

  • 1. Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation.
    Furuta KM; Yadav SR; Lehesranta S; Belevich I; Miyashima S; Heo JO; Vatén A; Lindgren O; De Rybel B; Van Isterdael G; Somervuo P; Lichtenberger R; Rocha R; Thitamadee S; Tähtiharju S; Auvinen P; Beeckman T; Jokitalo E; Helariutta Y
    Science; 2014 Aug; 345(6199):933-7. PubMed ID: 25081480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Botany. Making phloem--a near-death experience.
    Geldner N
    Science; 2014 Aug; 345(6199):875-6. PubMed ID: 25146271
    [No Abstract]   [Full Text] [Related]  

  • 3. Differentiation of conductive cells: a matter of life and death.
    Heo JO; Blob B; Helariutta Y
    Curr Opin Plant Biol; 2017 Feb; 35():23-29. PubMed ID: 27794261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.
    Froelich DR; Mullendore DL; Jensen KH; Ross-Elliott TJ; Anstead JA; Thompson GA; Pélissier HC; Knoblauch M
    Plant Cell; 2011 Dec; 23(12):4428-45. PubMed ID: 22198148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phloem-Conducting Cells in Haustoria of the Root-Parasitic Plant Phelipanche aegyptiaca Retain Nuclei and Are Not Mature Sieve Elements.
    Ekawa M; Aoki K
    Plants (Basel); 2017 Dec; 6(4):. PubMed ID: 29206147
    [No Abstract]   [Full Text] [Related]  

  • 6. CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication.
    Dettmer J; Ursache R; Campilho A; Miyashima S; Belevich I; O'Regan S; Mullendore DL; Yadav SR; Lanz C; Beverina L; Papagni A; Schneeberger K; Weigel D; Stierhof YD; Moritz T; Knoblauch M; Jokitalo E; Helariutta Y
    Nat Commun; 2014 Jul; 5():4276. PubMed ID: 25008948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis.
    Barratt DH; Kölling K; Graf A; Pike M; Calder G; Findlay K; Zeeman SC; Smith AM
    Plant Physiol; 2011 Jan; 155(1):328-41. PubMed ID: 21098675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of new proteins in mature sieve elements.
    Sanden NC; Schulz A
    Physiol Plant; 2022 Jan; 174(1):e13634. PubMed ID: 35060148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phloem differentiation: an integrative model for cell specification.
    Blob B; Heo JO; Helariutta Y
    J Plant Res; 2018 Jan; 131(1):31-36. PubMed ID: 29204753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular genetic framework for protophloem formation.
    Rodriguez-Villalon A; Gujas B; Kang YH; Breda AS; Cattaneo P; Depuydt S; Hardtke CS
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11551-6. PubMed ID: 25049386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filamentous sieve element proteins are able to limit phloem mass flow, but not phytoplasma spread.
    Pagliari L; Buoso S; Santi S; Furch ACU; Martini M; Degola F; Loschi A; van Bel AJE; Musetti R
    J Exp Bot; 2017 Jun; 68(13):3673-3688. PubMed ID: 28859375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SHORTROOT-Mediated Intercellular Signals Coordinate Phloem Development in Arabidopsis Roots.
    Kim H; Zhou J; Kumar D; Jang G; Ryu KH; Sebastian J; Miyashima S; Helariutta Y; Lee JY
    Plant Cell; 2020 May; 32(5):1519-1535. PubMed ID: 32111671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis.
    Xu L; Yang L; Pi L; Liu Q; Ling Q; Wang H; Poethig RS; Huang H
    Plant Cell Physiol; 2006 Jul; 47(7):853-63. PubMed ID: 16699177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning Electron Microscopy of the Phloem.
    Mullendore DL
    Methods Mol Biol; 2019; 2014():29-35. PubMed ID: 31197784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wiring a plant: genetic networks for phloem formation in Arabidopsis thaliana roots.
    Rodriguez-Villalon A
    New Phytol; 2016 Apr; 210(1):45-50. PubMed ID: 26171671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FE, a phloem-specific Myb-related protein, promotes flowering through transcriptional activation of FLOWERING LOCUS T and FLOWERING LOCUS T INTERACTING PROTEIN 1.
    Abe M; Kaya H; Watanabe-Taneda A; Shibuta M; Yamaguchi A; Sakamoto T; Kurata T; Ausín I; Araki T; Alonso-Blanco C
    Plant J; 2015 Sep; 83(6):1059-68. PubMed ID: 26239308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiating inhibition. Control of epidermal cell patterning in plants.
    Marks MD; Esch JJ
    EMBO Rep; 2003 Jan; 4(1):24-5. PubMed ID: 12524515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metaphloem development in the Arabidopsis root tip.
    Graeff M; Hardtke CS
    Development; 2021 Sep; 148(18):. PubMed ID: 34224570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis E2Fa plays a bimodal role in regulating cell division and cell growth.
    He SS; Liu J; Xie Z; O'Neill D; Dotson S
    Plant Mol Biol; 2004 Sep; 56(2):171-84. PubMed ID: 15604736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile PEAR transcription factors integrate positional cues to prime cambial growth.
    Miyashima S; Roszak P; Sevilem I; Toyokura K; Blob B; Heo JO; Mellor N; Help-Rinta-Rahko H; Otero S; Smet W; Boekschoten M; Hooiveld G; Hashimoto K; Smetana O; Siligato R; Wallner ES; Mähönen AP; Kondo Y; Melnyk CW; Greb T; Nakajima K; Sozzani R; Bishopp A; De Rybel B; Helariutta Y
    Nature; 2019 Jan; 565(7740):490-494. PubMed ID: 30626969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.