BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25081839)

  • 1. Furanosyl oxocarbenium ion stability and stereoselectivity.
    van Rijssel ER; van Delft P; Lodder G; Overkleeft HS; van der Marel GA; Filippov DV; Codée JD
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10381-5. PubMed ID: 25081839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselectivity in the Lewis acid mediated reduction of ketofuranoses.
    van Rijssel ER; van Delft P; van Marle DV; Bijvoets SM; Lodder G; Overkleeft HS; van der Marel GA; Filippov DV; Codée JD
    J Org Chem; 2015 May; 80(9):4553-65. PubMed ID: 25826382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Furanosyl Oxocarbenium Ion Conformational Energy Landscape Maps as a Tool to Study the Glycosylation Stereoselectivity of 2-Azidofuranoses, 2-Fluorofuranoses and Methyl Furanosyl Uronates.
    van der Vorm S; Hansen T; van Rijssel ER; Dekkers R; Madern JM; Overkleeft HS; Filippov DV; van der Marel GA; Codée JDC
    Chemistry; 2019 May; 25(29):7149-7157. PubMed ID: 30882938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, Reactivity, and Stereoselectivity of 4-Thiofuranosides.
    Madern JM; Hansen T; van Rijssel ER; Kistemaker HAV; van der Vorm S; Overkleeft HS; van der Marel GA; Filippov DV; Codée JDC
    J Org Chem; 2019 Feb; 84(3):1218-1227. PubMed ID: 30605336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of Stereoselectivity in S
    Remmerswaal WA; Hansen T; Hamlin TA; Codée JDC
    Chemistry; 2023 Mar; 29(14):e202203490. PubMed ID: 36511875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoelectronic Model To Explain Highly Stereoselective Reactions of Seven-Membered-Ring Oxocarbenium-Ion Intermediates.
    Beaver MG; Buscagan TM; Lavinda O; Woerpel KA
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1816-9. PubMed ID: 26791884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning the potential energy surface of furanosyl oxocarbenium ions: models for reactive intermediates in glycosylation reactions.
    Rhoad JS; Cagg BA; Carver PW
    J Phys Chem A; 2010 Apr; 114(15):5180-6. PubMed ID: 20353189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleophilic additions of trimethylsilyl cyanide to cyclic oxocarbenium ions: evidence for the loss of stereoselectivity at the limits of diffusion control.
    Shenoy SR; Smith DM; Woerpel KA
    J Am Chem Soc; 2006 Jul; 128(26):8671-7. PubMed ID: 16802834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereochemistry of nucleophilic substitution reactions depending upon substituent: evidence for electrostatic stabilization of pseudoaxial conformers of oxocarbenium ions by heteroatom substituents.
    Ayala L; Lucero CG; Romero JA; Tabacco SA; Woerpel KA
    J Am Chem Soc; 2003 Dec; 125(50):15521-8. PubMed ID: 14664599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive openings of benzylidene acetals revisited: a mechanistic scheme for regio- and stereoselectivity.
    Johnsson R; Ohlin M; Ellervik U
    J Org Chem; 2010 Dec; 75(23):8003-11. PubMed ID: 21033762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on the factors controlling the stability of the borate complexes of ribose, arabinose, lyxose, and xylose.
    Sponer JE; Sumpter BG; Leszczynski J; Sponer J; Fuentes-Cabrera M
    Chemistry; 2008; 14(32):9990-8. PubMed ID: 18810746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosyl Oxocarbenium Ions: Structure, Conformation, Reactivity, and Interactions.
    Franconetti A; Ardá A; Asensio JL; Blériot Y; Thibaudeau S; Jiménez-Barbero J
    Acc Chem Res; 2021 Jun; 54(11):2552-2564. PubMed ID: 33930267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleophilic substitution reactions of sulfur-substituted cyclohexanone acetals: an analysis of the factors controlling stereoselectivity.
    Billings SB; Woerpel KA
    J Org Chem; 2006 Jul; 71(14):5171-8. PubMed ID: 16808503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleophilic substitution reactions of pyranose polytosylates.
    McGeary RP; Rasoul Amini S; Tang VW; Toth I
    J Org Chem; 2004 Apr; 69(8):2727-30. PubMed ID: 15074919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of a chemical glycosylation reaction.
    Crich D
    Acc Chem Res; 2010 Aug; 43(8):1144-53. PubMed ID: 20496888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselectivity control by torsional steering in an intramolecular Diels-Alder reaction of vinyl oxocarbenium ions.
    Iafe RG; Houk KN
    Org Lett; 2006 Aug; 8(16):3469-72. PubMed ID: 16869637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using stereoelectronic effects to explain selective reactions of 4-substituted five-membered ring oxocarbenium ions.
    Smith DM; Woerpel KA
    Org Lett; 2004 Jun; 6(12):2063-6. PubMed ID: 15176819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoselective C-glycosylation reactions of ribose derivatives: electronic effects of five-membered ring oxocarbenium ions.
    Larsen CH; Ridgway BH; Shaw JT; Smith DM; Woerpel KA
    J Am Chem Soc; 2005 Aug; 127(31):10879-84. PubMed ID: 16076193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Stereoselective Glycosylation Reactions of Furanoside Derivatives via Rhenium (V) Catalysis.
    Casali E; Othman ST; Dezaye AA; Chiodi D; Porta A; Zanoni G
    J Org Chem; 2021 Jun; 86(11):7672-7686. PubMed ID: 34033490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substituent dependence of the diastereofacial selectivity in iodination and bromination of glycals and related cyclic enol ethers.
    Boschi A; Chiappe C; De Rubertis A; Ruasse MF
    J Org Chem; 2000 Dec; 65(25):8470-7. PubMed ID: 11112566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.