BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25081997)

  • 1. Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation.
    Andriotis OG; Manuyakorn W; Zekonyte J; Katsamenis OL; Fabri S; Howarth PH; Davies DE; Thurner PJ
    J Mech Behav Biomed Mater; 2014 Nov; 39():9-26. PubMed ID: 25081997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Force Microscopy Nanoindentation Method on Collagen Fibrils.
    Kontomaris SV; Stylianou A; Malamou A
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanical bending of single collagen fibrils using atomic force microscopy.
    Yang L; van der Werf KO; Koopman BF; Subramaniam V; Bennink ML; Dijkstra PJ; Feijen J
    J Biomed Mater Res A; 2007 Jul; 82(1):160-8. PubMed ID: 17269147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust strategies for automated AFM force curve analysis--I. Non-adhesive indentation of soft, inhomogeneous materials.
    Lin DC; Dimitriadis EK; Horkay F
    J Biomech Eng; 2007 Jun; 129(3):430-40. PubMed ID: 17536911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An atomic force microscope tip designed to measure time-varying nanomechanical forces.
    Sahin O; Magonov S; Su C; Quate CF; Solgaard O
    Nat Nanotechnol; 2007 Aug; 2(8):507-14. PubMed ID: 18654349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: validation with a gel-microfiber composite.
    Loparic M; Wirz D; Daniels AU; Raiteri R; Vanlandingham MR; Guex G; Martin I; Aebi U; Stolz M
    Biophys J; 2010 Jun; 98(11):2731-40. PubMed ID: 20513418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of mineralized collagen fibrils as influenced by demineralization.
    Balooch M; Habelitz S; Kinney JH; Marshall SJ; Marshall GW
    J Struct Biol; 2008 Jun; 162(3):404-10. PubMed ID: 18467127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of force volume indentation parameters and processing method in wood cell walls nanomechanical studies.
    Normand AC; Charrier AM; Arnould O; Lereu AL
    Sci Rep; 2021 Mar; 11(1):5739. PubMed ID: 33707500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural investigations on native collagen type I fibrils using AFM.
    Strasser S; Zink A; Janko M; Heckl WM; Thalhammer S
    Biochem Biophys Res Commun; 2007 Mar; 354(1):27-32. PubMed ID: 17210119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model.
    Andriotis OG; Chang SW; Vanleene M; Howarth PH; Davies DE; Shefelbine SJ; Buehler MJ; Thurner PJ
    J R Soc Interface; 2015 Oct; 12(111):20150701. PubMed ID: 26468064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: rate-dependent elastic modulus of live cells.
    Ren J; Yu S; Gao N; Zou Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052711. PubMed ID: 24329300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical properties of murine meniscus surface via AFM-based nanoindentation.
    Li Q; Doyran B; Gamer LW; Lu XL; Qin L; Ortiz C; Grodzinsky AJ; Rosen V; Han L
    J Biomech; 2015 Jun; 48(8):1364-70. PubMed ID: 25817332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling capillary interaction and viscoelastic response in atomic force microscopy of hydrated collagen fibrils.
    Uhlig MR; Magerle R
    Nanoscale; 2017 Jan; 9(3):1244-1256. PubMed ID: 28054696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy and indentation force measurement of bone.
    Thurner PJ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(6):624-49. PubMed ID: 20049821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy.
    Costa KD; Yin FC
    J Biomech Eng; 1999 Oct; 121(5):462-71. PubMed ID: 10529912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanical mapping of single collagen fibrils under tension.
    Peacock CJ; Kreplak L
    Nanoscale; 2019 Aug; 11(30):14417-14425. PubMed ID: 31334733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in collagen fibril pattern and adhesion force with collagenase-induced injury in rat Achilles tendon observed via AFM.
    Lee GJ; Choi S; Chon J; Yoo S; Cho I; Park HK
    J Nanosci Nanotechnol; 2011 Jan; 11(1):773-7. PubMed ID: 21446543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs.
    Andriotis OG; Desissaire S; Thurner PJ
    ACS Nano; 2018 Apr; 12(4):3671-3680. PubMed ID: 29529373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of collagen fibrils determined by buckling analysis.
    Gachon E; Mesquida P
    Acta Biomater; 2022 Sep; 149():60-68. PubMed ID: 35803503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomechanical 3D Depth Profiling of Collagen Fibrils in Native Tendon.
    Magerle R; Dehnert M; Voigt D; Bernstein A
    Anal Chem; 2020 Jul; 92(13):8741-8749. PubMed ID: 32484331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.