These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 25082083)
21. Enhancement of ACE and prolyl oligopeptidase inhibitory potency of protein hydrolysates from sardine and tuna by-products by simulated gastrointestinal digestion. Martínez-Alvarez O; Batista I; Ramos C; Montero P Food Funct; 2016 Apr; 7(4):2066-73. PubMed ID: 27045751 [TBL] [Abstract][Full Text] [Related]
22. Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Nongonierma AB; FitzGerald RJ Food Chem; 2014 Feb; 145():845-52. PubMed ID: 24128555 [TBL] [Abstract][Full Text] [Related]
23. Response surface methodology applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase IV inhibitory properties. Nongonierma AB; Maux SL; Esteveny C; FitzGerald RJ J Sci Food Agric; 2017 Mar; 97(4):1093-1101. PubMed ID: 27271791 [TBL] [Abstract][Full Text] [Related]
24. Enzymatic hydrolysis of Alaska pollack (Theragra chalcogramma) skin and antioxidant activity of the resulting hydrolysate. Jia J; Zhou Y; Lu J; Chen A; Li Y; Zheng G J Sci Food Agric; 2010 Mar; 90(4):635-40. PubMed ID: 20355092 [TBL] [Abstract][Full Text] [Related]
25. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Ngo DH; Ryu B; Vo TS; Himaya SW; Wijesekara I; Kim SK Int J Biol Macromol; 2011 Dec; 49(5):1110-6. PubMed ID: 21945677 [TBL] [Abstract][Full Text] [Related]
26. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Hall F; Johnson PE; Liceaga A Food Chem; 2018 Oct; 262():39-47. PubMed ID: 29751919 [TBL] [Abstract][Full Text] [Related]
28. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Lafarga T; O'Connor P; Hayes M Peptides; 2014 Sep; 59():53-62. PubMed ID: 25020248 [TBL] [Abstract][Full Text] [Related]
30. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Cermeño M; Stack J; Tobin PR; O'Keeffe MB; Harnedy PA; Stengel DB; FitzGerald RJ Food Funct; 2019 Jun; 10(6):3421-3429. PubMed ID: 31134998 [TBL] [Abstract][Full Text] [Related]
31. Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers' spent grain protein isolate. Connolly A; O'Keeffe MB; Piggott CO; Nongonierma AB; FitzGerald RJ Food Chem; 2015 Jun; 176():64-71. PubMed ID: 25624207 [TBL] [Abstract][Full Text] [Related]
32. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Ngo DH; Ryu B; Kim SK Food Chem; 2014 Jan; 143():246-55. PubMed ID: 24054237 [TBL] [Abstract][Full Text] [Related]
33. ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Rao S; Sun J; Liu Y; Zeng H; Su Y; Yang Y Food Chem; 2012 Dec; 135(3):1245-52. PubMed ID: 22953850 [TBL] [Abstract][Full Text] [Related]
34. Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. Vilcacundo R; Martínez-Villaluenga C; Miralles B; Hernández-Ledesma B J Sci Food Agric; 2019 Feb; 99(3):1225-1232. PubMed ID: 30066387 [TBL] [Abstract][Full Text] [Related]
35. Optimization of peptic hydrolysis parameters for the production of angiotensin I-converting enzyme inhibitory hydrolysate from Acetes chinensis through Plackett-Burman and response surface methodological approaches. Cao W; Zhang C; Ji H; Hao J J Sci Food Agric; 2012 Jan; 92(1):42-8. PubMed ID: 21732383 [TBL] [Abstract][Full Text] [Related]
36. Functional and antioxidative properties of protein hydrolysates from Cape hake by-products prepared by three different methodologies. Pires C; Clemente T; Batista I J Sci Food Agric; 2013 Mar; 93(4):771-80. PubMed ID: 22806771 [TBL] [Abstract][Full Text] [Related]
37. Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. Segura Campos MR; Chel Guerrero LA; Betancur Ancona DA J Sci Food Agric; 2010 Nov; 90(14):2512-8. PubMed ID: 20690111 [TBL] [Abstract][Full Text] [Related]
38. Identification of Antioxidant Peptides in Enzymatic Hydrolysates of Carp ( Tkaczewska J; Bukowski M; Mak P Molecules; 2018 Dec; 24(1):. PubMed ID: 30597854 [TBL] [Abstract][Full Text] [Related]
39. Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Durak A; Baraniak B; Jakubczyk A; Świeca M Food Chem; 2013 Dec; 141(3):2177-83. PubMed ID: 23870945 [TBL] [Abstract][Full Text] [Related]
40. Using Caco-2 cells as novel identification tool for food-derived DPP-IV inhibitors. Caron J; Domenger D; Dhulster P; Ravallec R; Cudennec B Food Res Int; 2017 Feb; 92():113-118. PubMed ID: 28290288 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]