These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25082147)

  • 1. Transcriptome assembly and quantification from Ion Torrent RNA-Seq data.
    Mangul S; Caciula A; Al Seesi S; Brinza D; Mӑndoiu I; Zelikovsky A
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S7. PubMed ID: 25082147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion Torrent and lllumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome.
    Guerrero-Sanchez VM; Maldonado-Alconada AM; Amil-Ruiz F; Verardi A; Jorrín-Novo JV; Rey MD
    PLoS One; 2019; 14(1):e0210356. PubMed ID: 30650136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AtRTD - a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana.
    Zhang R; Calixto CP; Tzioutziou NA; James AB; Simpson CG; Guo W; Marquez Y; Kalyna M; Patro R; Eyras E; Barta A; Nimmo HG; Brown JW
    New Phytol; 2015 Oct; 208(1):96-101. PubMed ID: 26111100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate inference of isoforms from multiple sample RNA-Seq data.
    Tasnim M; Ma S; Yang EW; Jiang T; Li W
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S15. PubMed ID: 25708199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.
    Behr J; Kahles A; Zhong Y; Sreedharan VT; Drewe P; Rätsch G
    Bioinformatics; 2013 Oct; 29(20):2529-38. PubMed ID: 23980025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level.
    Zhang Z; Wang W
    Bioinformatics; 2014 Jun; 30(12):i283-i292. PubMed ID: 24931995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.
    Zhang Z; Xing Y
    Nucleic Acids Res; 2017 Sep; 45(16):9260-9271. PubMed ID: 28934506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads.
    Li W; Jiang T
    Bioinformatics; 2012 Nov; 28(22):2914-21. PubMed ID: 23060617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MultiTrans: An Algorithm for Path Extraction Through Mixed Integer Linear Programming for Transcriptome Assembly.
    Zhao J; Feng H; Zhu D; Lin Y
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):48-56. PubMed ID: 34033544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved transcriptome quantification and reconstruction from RNA-Seq reads using partial annotations.
    Mangul S; Caciula A; Glebova O; Mandoiu I; Zelikovsky A
    In Silico Biol; 2011-2012; 11(5-6):251-61. PubMed ID: 23202426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSP: an interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads.
    Safikhani Z; Sadeghi M; Pezeshk H; Eslahchi C
    Genomics; 2013; 102(5-6):507-14. PubMed ID: 24161398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study.
    Zhao QY; Wang Y; Kong YM; Luo D; Li X; Hao P
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S2. PubMed ID: 22373417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A memory-efficient algorithm to obtain splicing graphs and de novo expression estimates from de Bruijn graphs of RNA-Seq data.
    Sze SH; Tarone AM
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S6. PubMed ID: 25082000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information transduction capacity reduces the uncertainties in annotation-free isoform discovery and quantification.
    Deng Y; Bao F; Yang Y; Ji X; Du M; Zhang Z; Wang M; Dai Q
    Nucleic Acids Res; 2017 Sep; 45(15):e143. PubMed ID: 28911101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piecing the puzzle together: a revisit to transcript reconstruction problem in RNA-seq.
    Huang Y; Hu Y; Liu J
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S3. PubMed ID: 25252653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CIDANE: comprehensive isoform discovery and abundance estimation.
    Canzar S; Andreotti S; Weese D; Reinert K; Klau GW
    Genome Biol; 2016 Jan; 17():16. PubMed ID: 26831908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-Based Isoform Quantification with RNA-Seq Data for Cancer Transcriptome Analysis.
    Zhang W; Chang JW; Lin L; Minn K; Wu B; Chien J; Yong J; Zheng H; Kuang R
    PLoS Comput Biol; 2015 Dec; 11(12):e1004465. PubMed ID: 26699225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm.
    Ji X; Tong W; Ning B; Mason CE; Kreil DP; Labaj PP; Chen G; Shi T
    Sci China Life Sci; 2019 Jul; 62(7):937-946. PubMed ID: 31124003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SparseIso: a novel Bayesian approach to identify alternatively spliced isoforms from RNA-seq data.
    Shi X; Wang X; Wang TL; Hilakivi-Clarke L; Clarke R; Xuan J
    Bioinformatics; 2018 Jan; 34(1):56-63. PubMed ID: 28968634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.