BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 25082229)

  • 1. Common and distinctive pathogenetic features of arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal models--brief report.
    Garrido-Martin EM; Nguyen HL; Cunningham TA; Choe SW; Jiang Z; Arthur HM; Lee YJ; Oh SP
    Arterioscler Thromb Vasc Biol; 2014 Oct; 34(10):2232-6. PubMed ID: 25082229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of Activin Receptor-Like Kinase 1 in Endothelial Cells Suppresses Development of Arteriovenous Malformations in Mouse Models of Hereditary Hemorrhagic Telangiectasia.
    Hwan Kim Y; Vu PN; Choe SW; Jeon CJ; Arthur HM; Vary CPH; Lee YJ; Oh SP
    Circ Res; 2020 Oct; 127(9):1122-1137. PubMed ID: 32762495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BMP10 functions independently from BMP9 for the development of a proper arteriovenous network.
    Choi H; Kim BG; Kim YH; Lee SJ; Lee YJ; Oh SP
    Angiogenesis; 2023 Feb; 26(1):167-186. PubMed ID: 36348215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropilin-1 deficiency in vascular smooth muscle cells is associated with hereditary hemorrhagic telangiectasia arteriovenous malformations.
    Kilari S; Wang Y; Singh A; Graham RP; Iyer V; Thompson SM; Torbenson MS; Mukhopadhyay D; Misra S
    JCI Insight; 2022 May; 7(9):. PubMed ID: 35380991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMAD4 Deficiency Leads to Development of Arteriovenous Malformations in Neonatal and Adult Mice.
    Kim YH; Choe SW; Chae MY; Hong S; Oh SP
    J Am Heart Assoc; 2018 Nov; 7(21):e009514. PubMed ID: 30571376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced responses to angiogenic cues underlie the pathogenesis of hereditary hemorrhagic telangiectasia 2.
    Choi EJ; Kim YH; Choe SW; Tak YG; Garrido-Martin EM; Chang M; Lee YJ; Oh SP
    PLoS One; 2013; 8(5):e63138. PubMed ID: 23675457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2.
    Han C; Choe SW; Kim YH; Acharya AP; Keselowsky BG; Sorg BS; Lee YJ; Oh SP
    Angiogenesis; 2014 Oct; 17(4):823-830. PubMed ID: 24957885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hereditary hemorrhagic telangiectasia: clinical features in ENG and ALK1 mutation carriers.
    Sabbà C; Pasculli G; Lenato GM; Suppressa P; Lastella P; Memeo M; Dicuonzo F; Guant G
    J Thromb Haemost; 2007 Jun; 5(6):1149-57. PubMed ID: 17388964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia.
    Crist AM; Lee AR; Patel NR; Westhoff DE; Meadows SM
    Angiogenesis; 2018 May; 21(2):363-380. PubMed ID: 29460088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia.
    Choi EJ; Chen W; Jun K; Arthur HM; Young WL; Su H
    PLoS One; 2014; 9(2):e88511. PubMed ID: 24520391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential role for TMEM100 in vascular integrity but limited contributions to the pathogenesis of hereditary haemorrhagic telangiectasia.
    Moon EH; Kim YS; Seo J; Lee S; Lee YJ; Oh SP
    Cardiovasc Res; 2015 Mar; 105(3):353-60. PubMed ID: 25538155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endoglin and activin receptor-like-kinase 1 are co-expressed in the distal vessels of the lung: implications for two familial vascular dysplasias, HHT and PAH.
    Mahmoud M; Borthwick GM; Hislop AA; Arthur HM
    Lab Invest; 2009 Jan; 89(1):15-25. PubMed ID: 19015642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimal homozygous endothelial deletion of Eng with VEGF stimulation is sufficient to cause cerebrovascular dysplasia in the adult mouse.
    Choi EJ; Walker EJ; Shen F; Oh SP; Arthur HM; Young WL; Su H
    Cerebrovasc Dis; 2012; 33(6):540-7. PubMed ID: 22571958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia.
    Park SO; Wankhede M; Lee YJ; Choi EJ; Fliess N; Choe SW; Oh SH; Walter G; Raizada MK; Sorg BS; Oh SP
    J Clin Invest; 2009 Nov; 119(11):3487-96. PubMed ID: 19805914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogenesis of arteriovenous malformations in the absence of endoglin.
    Mahmoud M; Allinson KR; Zhai Z; Oakenfull R; Ghandi P; Adams RH; Fruttiger M; Arthur HM
    Circ Res; 2010 Apr; 106(8):1425-33. PubMed ID: 20224041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized conditional induction of brain arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia.
    Scherschinski L; Han C; Kim YH; Winkler EA; Catapano JS; Schriber TD; Vajkoczy P; Lawton MT; Oh SP
    Angiogenesis; 2023 Nov; 26(4):493-503. PubMed ID: 37219736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective effects of oral antiangiogenic tyrosine kinase inhibitors on an animal model of hereditary hemorrhagic telangiectasia.
    Kim YH; Kim MJ; Choe SW; Sprecher D; Lee YJ; P Oh S
    J Thromb Haemost; 2017 Jun; 15(6):1095-1102. PubMed ID: 28339142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SMAD4 Prevents Flow Induced Arteriovenous Malformations by Inhibiting Casein Kinase 2.
    Ola R; Künzel SH; Zhang F; Genet G; Chakraborty R; Pibouin-Fragner L; Martin K; Sessa W; Dubrac A; Eichmann A
    Circulation; 2018 Nov; 138(21):2379-2394. PubMed ID: 29976569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial cell biology of Endoglin in hereditary hemorrhagic telangiectasia.
    Sugden WW; Siekmann AF
    Curr Opin Hematol; 2018 May; 25(3):237-244. PubMed ID: 29438260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling.
    Jin Y; Muhl L; Burmakin M; Wang Y; Duchez AC; Betsholtz C; Arthur HM; Jakobsson L
    Nat Cell Biol; 2017 Jun; 19(6):639-652. PubMed ID: 28530660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.