These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 25082268)
1. Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture. Sasaki K; Yamaguchi H; Nakayama M; Aida R; Ohtsubo N Plant Mol Biol; 2014 Oct; 86(3):319-34. PubMed ID: 25082268 [TBL] [Abstract][Full Text] [Related]
2. Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind. Sasaki K; Aida R; Yamaguchi H; Shikata M; Niki T; Nishijima T; Ohtsubo N Mol Genet Genomics; 2010 Nov; 284(5):399-414. PubMed ID: 20872230 [TBL] [Abstract][Full Text] [Related]
3. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation. Sasaki K; Yamaguchi H; Aida R; Shikata M; Abe T; Ohtsubo N Plant J; 2012 Sep; 71(6):1002-14. PubMed ID: 22577962 [TBL] [Abstract][Full Text] [Related]
4. Production of multi-petaled Torenia fournieri flowers by functional disruption of two class-C MADS-box genes. Sasaki K; Ohtsubo N Planta; 2020 Apr; 251(5):101. PubMed ID: 32333191 [TBL] [Abstract][Full Text] [Related]
5. Ectopic expression of AtNF-YA6-VP16 in petals results in a novel petal phenotype in Torenia fournieri. Sekiguchi N; Sasaki K; Oshima Y; Mitsuda N Planta; 2022 Apr; 255(5):105. PubMed ID: 35429252 [TBL] [Abstract][Full Text] [Related]
6. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163 [TBL] [Abstract][Full Text] [Related]
7. Epidermal control of floral organ identity by class B homeotic genes in Antirrhinum and Arabidopsis. Efremova N; Perbal MC; Yephremov A; Hofmann WA; Saedler H; Schwarz-Sommer Z Development; 2001 Jul; 128(14):2661-71. PubMed ID: 11526073 [TBL] [Abstract][Full Text] [Related]
8. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. Geuten K; Becker A; Kaufmann K; Caris P; Janssens S; Viaene T; Theissen G; Smets E Plant J; 2006 Aug; 47(4):501-18. PubMed ID: 16856983 [TBL] [Abstract][Full Text] [Related]
9. The Petal-Specific InMYB1 Promoter Functions by Recognizing Petaloid Cells. Azuma M; Mitsuda N; Goto K; Oshima Y; Ohme-Takagi M; Otagaki S; Matsumoto S; Shiratake K Plant Cell Physiol; 2016 Mar; 57(3):580-7. PubMed ID: 26858281 [TBL] [Abstract][Full Text] [Related]
10. The differentiation of sepal and petal morphologies in Commelinaceae. Ochiai T; Nakamura T; Mashiko Y; Fukuda T; Yokoyama J; Kanno A; Kameya T Gene; 2004 Dec; 343(2):253-62. PubMed ID: 15588580 [TBL] [Abstract][Full Text] [Related]
11. Ma YQ; Pu ZQ; Tan XM; Meng Q; Zhang KL; Yang L; Ma YY; Huang X; Xu ZQ PeerJ; 2022; 10():e13034. PubMed ID: 35251790 [TBL] [Abstract][Full Text] [Related]
12. The S locus-linked Primula homeotic mutant sepaloid shows characteristics of a B-function mutant but does not result from mutation in a B-function gene. Li J; Webster M; Dudas B; Cook H; Manfield I; Davies B; Gilmartin PM Plant J; 2008 Oct; 56(1):1-12. PubMed ID: 18564384 [TBL] [Abstract][Full Text] [Related]
13. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. Huang F; Xu G; Chi Y; Liu H; Xue Q; Zhao T; Gai J; Yu D BMC Plant Biol; 2014 Apr; 14():89. PubMed ID: 24693922 [TBL] [Abstract][Full Text] [Related]
14. Generation of Novel Floral Traits Using a Combination of Floral Organ-Specific Promoters and a Chimeric Repressor in Torenia fournieri Lind. Sasaki K; Yamaguchi H; Kasajima I; Narumi T; Ohtsubo N Plant Cell Physiol; 2016 Jun; 57(6):1319-31. PubMed ID: 27107289 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the floral MADS-box genes from monocotyledonous Trilliaceae species indicates the involvement of SEPALLATA3-like genes in sepal-petal differentiation. Kubota S; Kanno A Plant Sci; 2015 Dec; 241():266-76. PubMed ID: 26706077 [TBL] [Abstract][Full Text] [Related]
16. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. Kalivas A; Pasentsis K; Polidoros AN; Tsaftaris AS DNA Seq; 2007 Apr; 18(2):120-30. PubMed ID: 17364823 [TBL] [Abstract][Full Text] [Related]
17. Recessive loci Pps-1 and OM differentially regulate PISTILLATA-1 and APETALA3-1 expression for sepal and petal development in Papaver somniferum. Singh SK; Shukla AK; Dhawan OP; Shasany AK PLoS One; 2014; 9(6):e101272. PubMed ID: 24979593 [TBL] [Abstract][Full Text] [Related]
18. Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Perbal MC; Haughn G; Saedler H; Schwarz-Sommer Z Development; 1996 Nov; 122(11):3433-41. PubMed ID: 8951059 [TBL] [Abstract][Full Text] [Related]
19. Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner. Byzova M; Verduyn C; De Brouwer D; De Block M Planta; 2004 Jan; 218(3):379-87. PubMed ID: 14534787 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms. Liu S; Sun Y; Du X; Xu Q; Wu F; Meng Z Ann Bot; 2013 Nov; 112(7):1239-51. PubMed ID: 23956161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]