BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25082334)

  • 1. A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane.
    Li Y; Zhang X; Cao D
    Soft Matter; 2014 Sep; 10(35):6844-56. PubMed ID: 25082334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle hardness controls the internalization pathway for drug delivery.
    Li Y; Zhang X; Cao D
    Nanoscale; 2015 Feb; 7(6):2758-69. PubMed ID: 25585060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical characterization of nanoparticle-endothelial model cell membrane interactions.
    Peetla C; Labhasetwar V
    Mol Pharm; 2008; 5(3):418-29. PubMed ID: 18271547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of acid and polymer coated nanoparticles: a statistical thermodynamics approach.
    Nap RJ; Park Y; Wong JY; Szleifer I
    Langmuir; 2013 Nov; 29(47):14482-93. PubMed ID: 24143965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system.
    Tang H; Ye H; Zhang H; Zheng Y
    Nanotechnology; 2018 Oct; 29(40):405102. PubMed ID: 30020084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction.
    Vácha R; Martinez-Veracoechea FJ; Frenkel D
    ACS Nano; 2012 Dec; 6(12):10598-605. PubMed ID: 23148579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.
    Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY
    Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing nanoparticle translocation through membranes by computer simulations.
    Ding HM; Tian WD; Ma YQ
    ACS Nano; 2012 Feb; 6(2):1230-8. PubMed ID: 22208867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative transmembrane penetration of nanoparticles.
    Zhang H; Ji Q; Huang C; Zhang S; Yuan B; Yang K; Ma YQ
    Sci Rep; 2015 May; 5():10525. PubMed ID: 26013284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles.
    Tang H; Ye H; Zhang H; Zheng Y
    Soft Matter; 2015 Nov; 11(44):8674-83. PubMed ID: 26381589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption.
    Aydin F; Dutt M
    J Phys Chem B; 2016 Jul; 120(27):6646-56. PubMed ID: 27340906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico.
    Wang W; Yang R; Zhang F; Yuan B; Yang K; Ma Y
    Nanoscale; 2018 Jun; 10(24):11670-11678. PubMed ID: 29897087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of membrane responses to the adsorption of rotating nanoparticles: promoted cell uptake and mechanical membrane rupture.
    Yue T; Zhang X; Huang F
    Soft Matter; 2015 Jan; 11(3):456-65. PubMed ID: 25388826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles.
    Peetla C; Rao KS; Labhasetwar V
    Mol Pharm; 2009; 6(5):1311-20. PubMed ID: 19243206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.