These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25082441)

  • 1. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae.
    Martínez JL; Liu L; Petranovic D; Nielsen J
    Biotechnol Bioeng; 2015 Jan; 112(1):181-8. PubMed ID: 25082441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Production of Cofactor-Containing Proteins: Production of Human Hemoglobin in Yeast.
    Ishchuk OP; Martínez JL; Petranovic D
    Methods Mol Biol; 2019; 1923():243-264. PubMed ID: 30737744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae.
    Liu L; Martínez JL; Liu Z; Petranovic D; Nielsen J
    Metab Eng; 2014 Jan; 21():9-16. PubMed ID: 24188961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of wild type and mutant human hemoglobins in Saccharomyces cerevisiae.
    Wagenbach M; O'Rourke K; Vitez L; Wieczorek A; Hoffman S; Durfee S; Tedesco J; Stetler G
    Biotechnology (N Y); 1991 Jan; 9(1):57-61. PubMed ID: 1367213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel allele of HAP1 causes uninducible expression of HEM13 in Saccharomyces cerevisiae.
    Ushinsky SC; Keng T
    Genetics; 1994 Mar; 136(3):819-31. PubMed ID: 8005437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved production of human hemoglobin in yeast by engineering hemoglobin degradation.
    Ishchuk OP; Frost AT; Muñiz-Paredes F; Matsumoto S; Laforge N; Eriksson NL; Martínez JL; Petranovic D
    Metab Eng; 2021 Jul; 66():259-267. PubMed ID: 33984513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae.
    Keng T
    Mol Cell Biol; 1992 Jun; 12(6):2616-23. PubMed ID: 1588959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CYP1 (HAP1) is a determinant effector of alternative expression of heme-dependent transcribed genes in yeast [corrected].
    Verdière J; Gaisne M; Labbe-Bois R
    Mol Gen Genet; 1991 Aug; 228(1-2):300-6. PubMed ID: 1715975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor.
    Hickman MJ; Winston F
    Mol Cell Biol; 2007 Nov; 27(21):7414-24. PubMed ID: 17785431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production.
    Hong J; Park SH; Kim S; Kim SW; Hahn JS
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):211-223. PubMed ID: 30343427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive and negative elements involved in the differential regulation by heme and oxygen of the HEM13 gene (coproporphyrinogen oxidase) in Saccharomyces cerevisiae.
    Amillet JM; Buisson N; Labbe-Bois R
    Curr Genet; 1995 Nov; 28(6):503-11. PubMed ID: 8593679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris (
    Tomàs-Gamisans M; Andrade CCP; Maresca F; Monforte S; Ferrer P; Albiol J
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31757828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing stability and expression of recombinant human hemoglobin in E. coli: Progress in the development of a recombinant HBOC source.
    Graves PE; Henderson DP; Horstman MJ; Solomon BJ; Olson JS
    Biochim Biophys Acta; 2008 Oct; 1784(10):1471-9. PubMed ID: 18489914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins.
    Xue J; Zhou J; Li J; Du G; Chen J; Wang M; Zhao X
    Bioresour Technol; 2023 Feb; 370():128556. PubMed ID: 36586429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of hypoxic gene expression in yeast.
    Zitomer RS; Carrico P; Deckert J
    Kidney Int; 1997 Feb; 51(2):507-13. PubMed ID: 9027731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen binding and other physical properties of human hemoglobin made in yeast.
    Adachi K; Konitzer P; Lai CH; Kim J; Surrey S
    Protein Eng; 1992 Dec; 5(8):807-10. PubMed ID: 1287662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanism of oxygen sensing in yeast. Multiple oxygen-responsive steps in the heme biosynthetic pathway affect Hap1 activity.
    Hon T; Dodd A; Dirmeier R; Gorman N; Sinclair PR; Zhang L; Poyton RO
    J Biol Chem; 2003 Dec; 278(50):50771-80. PubMed ID: 14512429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P; Shahpiri A; Asadollahi MA; Momenbeik F; Partow S
    Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.