These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25082652)

  • 1. Useful properties of spinal circuits for learning and performing planar reaches.
    Tsianos GA; Goodner J; Loeb GE
    J Neural Eng; 2014 Oct; 11(5):056006. PubMed ID: 25082652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the potentiality of spinal-like circuitry for stabilization of a planar arm system.
    Tsianos GA; Raphael G; Loeb GE
    Prog Brain Res; 2011; 194():203-13. PubMed ID: 21867805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal-like regulator facilitates control of a two-degree-of-freedom wrist.
    Raphael G; Tsianos GA; Loeb GE
    J Neurosci; 2010 Jul; 30(28):9431-44. PubMed ID: 20631172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simplified Spinal-Like Controller Facilitates Muscle Synergies and Robust Reaching Motions.
    Stefanovic F; Galiana HL
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):77-87. PubMed ID: 23996578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coding of movement- and force-related information in primate primary motor cortex: a computational approach.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2007 Jul; 26(1):250-60. PubMed ID: 17573920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement generation with circuits of spiking neurons.
    Joshi P; Maass W
    Neural Comput; 2005 Aug; 17(8):1715-38. PubMed ID: 15969915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar learning of accurate predictive control for fast-reaching movements.
    Spoelstra J; Schweighofer N; Arbib MA
    Biol Cybern; 2000 Apr; 82(4):321-33. PubMed ID: 10804064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons.
    Schieber MH; Rivlis G
    J Neurophysiol; 2007 Jan; 97(1):70-82. PubMed ID: 17035361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord.
    Adkins DL; Boychuk J; Remple MS; Kleim JA
    J Appl Physiol (1985); 2006 Dec; 101(6):1776-82. PubMed ID: 16959909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modular neural model of motor synergies.
    Byadarhaly KV; Perdoor MC; Minai AA
    Neural Netw; 2012 Aug; 32():96-108. PubMed ID: 22394689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reorganization of the human central nervous system.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 2000 Oct; 19 Suppl 1():11-240. PubMed ID: 11252267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and Identification of a Realistic Spiking Neural Network and Musculoskeletal Model of the Human Arm, and an Application to the Stretch Reflex.
    Sreenivasa M; Ayusawa K; Nakamura Y
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):591-602. PubMed ID: 26394432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based neural decoding of reaching movements: a maximum likelihood approach.
    Kemere C; Shenoy KV; Meng TH
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):925-32. PubMed ID: 15188860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics.
    Contreras-Vidal JL; Grossberg S; Bullock D
    Learn Mem; 1997; 3(6):475-502. PubMed ID: 10456112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation.
    Zaaimi B; Dean LR; Baker SN
    J Neurophysiol; 2018 Jan; 119(1):235-250. PubMed ID: 29046427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discharge of primate magnocellular red nucleus neurons during reaching to grasp in different spatial locations.
    van Kan PL; McCurdy ML
    Exp Brain Res; 2002 Jan; 142(1):151-7. PubMed ID: 11797092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MODEM: a multi-agent hierarchical structure to model the human motor control system.
    Emadi Andani M; Bahrami F; Jabehdar Maralani P; Ijspeert AJ
    Biol Cybern; 2009 Dec; 101(5-6):361-77. PubMed ID: 19862548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efferent Feedback in a Spinal-Like Controller: Reaching With Perturbations.
    Stefanovic F; Galiana HL
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):140-50. PubMed ID: 26057850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primate red nucleus discharge encodes the dynamics of limb muscle activity.
    Miller LE; Sinkjaer T
    J Neurophysiol; 1998 Jul; 80(1):59-70. PubMed ID: 9658028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural systems for control of voluntary action--a hypothesis.
    Hikosaka O
    Adv Biophys; 1998; 35():81-102. PubMed ID: 9949766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.