BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25082951)

  • 1. Functional characterization of the dguRABC locus for D-Glu and d-Gln utilization in Pseudomonas aeruginosa PAO1.
    He W; Li G; Yang CK; Lu CD
    Microbiology (Reading); 2014 Oct; 160(Pt 10):2331-2340. PubMed ID: 25082951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.
    He W; Li C; Lu CD
    J Bacteriol; 2011 May; 193(9):2107-15. PubMed ID: 21378189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the dauBAR operon and characterization of D-amino acid dehydrogenase DauA in arginine and lysine catabolism of Pseudomonas aeruginosa PAO1.
    Li C; Yao X; Lu CD
    Microbiology (Reading); 2010 Jan; 156(Pt 1):60-71. PubMed ID: 19850617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a Pseudomonas putida ABC transporter (AatJMQP) required for acidic amino acid uptake: biochemical properties and regulation by the Aau two-component system.
    Singh B; Röhm KH
    Microbiology (Reading); 2008 Mar; 154(Pt 3):797-809. PubMed ID: 18310026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of LhpR in control of hydroxyproline catabolism and transport in Pseudomonas aeruginosa PAO1.
    Li G; Lu CD
    Microbiology (Reading); 2016 Jul; 162(7):1232-1242. PubMed ID: 27145750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization and regulation of operons for asparagine and aspartate uptake and utilization in Pseudomonas aeruginosa.
    Li G; Lu CD
    Microbiology (Reading); 2018 Feb; 164(2):205-216. PubMed ID: 29293081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.
    Nakada Y; Nishijyo T; Itoh Y
    J Bacteriol; 2002 Oct; 184(20):5633-40. PubMed ID: 12270821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1.
    Madhuri Indurthi S; Chou HT; Lu CD
    Microbiology (Reading); 2016 May; 162(5):876-888. PubMed ID: 26967762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP.
    Lundgren BR; Shoytush JM; Scheel RA; Sain S; Sarwar Z; Nomura CT
    BMC Microbiol; 2021 Mar; 21(1):83. PubMed ID: 33722201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa.
    Yang Z; Lu CD
    J Bacteriol; 2007 Jun; 189(11):3945-53. PubMed ID: 17416670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1.
    Swanson BL; Hager P; Phibbs P; Ochsner U; Vasil ML; Hamood AN
    Mol Microbiol; 2000 Aug; 37(3):561-73. PubMed ID: 10931350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Cryptic dsdA Gene Encodes a Functional D-Serine Dehydratase in Pseudomonas aeruginosa PAO1.
    Li G; Lu CD
    Curr Microbiol; 2016 Jun; 72(6):788-94. PubMed ID: 26957519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The AauR-AauS two-component system regulates uptake and metabolism of acidic amino acids in Pseudomonas putida.
    Sonawane AM; Singh B; Röhm KH
    Appl Environ Microbiol; 2006 Oct; 72(10):6569-77. PubMed ID: 17021207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of seven γ-Glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-Alanine utilization in Pseudomonas aeruginosa PAO1.
    Yao X; He W; Lu CD
    J Bacteriol; 2011 Aug; 193(15):3923-30. PubMed ID: 21622750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1.
    Lu CD; Itoh Y; Nakada Y; Jiang Y
    J Bacteriol; 2002 Jul; 184(14):3765-73. PubMed ID: 12081945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas aeruginosa MifS-MifR Two-Component System Is Specific for α-Ketoglutarate Utilization.
    Tatke G; Kumari H; Silva-Herzog E; Ramirez L; Mathee K
    PLoS One; 2015; 10(6):e0129629. PubMed ID: 26114434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.
    Wargo MJ; Szwergold BS; Hogan DA
    J Bacteriol; 2008 Apr; 190(8):2690-9. PubMed ID: 17951379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1.
    Chou HT; Li JY; Peng YC; Lu CD
    J Bacteriol; 2013 Sep; 195(17):3906-13. PubMed ID: 23794626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-lysine catabolism is controlled by L-arginine and ArgR in Pseudomonas aeruginosa PAO1.
    Chou HT; Hegazy M; Lu CD
    J Bacteriol; 2010 Nov; 192(22):5874-80. PubMed ID: 20833801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation of nitrate assimilation in Pseudomonas aeruginosa occurs via transcriptional antitermination within the nirBD-PA1779-cobA operon.
    Romeo A; Sonnleitner E; Sorger-Domenigg T; Nakano M; Eisenhaber B; Bläsi U
    Microbiology (Reading); 2012 Jun; 158(Pt 6):1543-1552. PubMed ID: 22493305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.