BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25083344)

  • 1. FUS-regulated RNA metabolism and DNA damage repair: Implications for amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis.
    Zhou Y; Liu S; Oztürk A; Hicks GG
    Rare Dis; 2014; 2():e29515. PubMed ID: 25083344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation.
    Zhou Y; Liu S; Liu G; Oztürk A; Hicks GG
    PLoS Genet; 2013 Oct; 9(10):e1003895. PubMed ID: 24204307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis.
    Shang Y; Huang EJ
    Brain Res; 2016 Sep; 1647():65-78. PubMed ID: 27033831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins.
    Ratti A; Buratti E
    J Neurochem; 2016 Aug; 138 Suppl 1():95-111. PubMed ID: 27015757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis.
    Verbeeck C; Deng Q; Dejesus-Hernandez M; Taylor G; Ceballos-Diaz C; Kocerha J; Golde T; Das P; Rademakers R; Dickson DW; Kukar T
    Mol Neurodegener; 2012 Oct; 7():53. PubMed ID: 23046583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA Damage and Repair Deficiency in ALS/FTD-Associated Neurodegeneration: From Molecular Mechanisms to Therapeutic Implication.
    Wang H; Kodavati M; Britz GW; Hegde ML
    Front Mol Neurosci; 2021; 14():784361. PubMed ID: 34975400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.
    Mackenzie IR; Rademakers R; Neumann M
    Lancet Neurol; 2010 Oct; 9(10):995-1007. PubMed ID: 20864052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology.
    Ince PG; Highley JR; Kirby J; Wharton SB; Takahashi H; Strong MJ; Shaw PJ
    Acta Neuropathol; 2011 Dec; 122(6):657-71. PubMed ID: 22105541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogenesis of FUS-associated ALS and FTD: insights from rodent models.
    Nolan M; Talbot K; Ansorge O
    Acta Neuropathol Commun; 2016 Sep; 4(1):99. PubMed ID: 27600654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel miR-b2122 regulates several ALS-related RNA-binding proteins.
    Hawley ZCE; Campos-Melo D; Strong MJ
    Mol Brain; 2017 Oct; 10(1):46. PubMed ID: 28969660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations.
    Neumann M; Bentmann E; Dormann D; Jawaid A; DeJesus-Hernandez M; Ansorge O; Roeber S; Kretzschmar HA; Munoz DG; Kusaka H; Yokota O; Ang LC; Bilbao J; Rademakers R; Haass C; Mackenzie IR
    Brain; 2011 Sep; 134(Pt 9):2595-609. PubMed ID: 21856723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functions of FUS/TLS from DNA repair to stress response: implications for ALS.
    Sama RR; Ward CL; Bosco DA
    ASN Neuro; 2014 Jun; 6(4):. PubMed ID: 25289647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amelioration of toxicity in neuronal models of amyotrophic lateral sclerosis by hUPF1.
    Barmada SJ; Ju S; Arjun A; Batarse A; Archbold HC; Peisach D; Li X; Zhang Y; Tank EM; Qiu H; Huang EJ; Ringe D; Petsko GA; Finkbeiner S
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7821-6. PubMed ID: 26056265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TAR DNA binding protein-43 and fused in sarcoma/translocated in liposarcoma protein in two neurodegenerative diseases.
    Wang XN; Cui LY
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2012 Jun; 34(3):286-92. PubMed ID: 22776664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontotemporal lobar degeneration and amyotrophic lateral sclerosis: molecular similarities and differences.
    Neumann M
    Rev Neurol (Paris); 2013 Oct; 169(10):793-8. PubMed ID: 24011641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs.
    Lagier-Tourenne C; Polymenidou M; Hutt KR; Vu AQ; Baughn M; Huelga SC; Clutario KM; Ling SC; Liang TY; Mazur C; Wancewicz E; Kim AS; Watt A; Freier S; Hicks GG; Donohue JP; Shiue L; Bennett CF; Ravits J; Cleveland DW; Yeo GW
    Nat Neurosci; 2012 Nov; 15(11):1488-97. PubMed ID: 23023293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated FUS levels by overriding its autoregulation produce gain-of-toxicity properties that disrupt protein and RNA homeostasis.
    Ho WY; Ling SC
    Autophagy; 2019 Sep; 15(9):1665-1667. PubMed ID: 31230528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Clinical and pathological characteristics of FUS/TLS-associated amyotrophic lateral sclerosis (ALS)].
    Murayama S
    Rinsho Shinkeigaku; 2010 Nov; 50(11):948-50. PubMed ID: 21921522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia.
    Jovičić A; Paul JW; Gitler AD
    J Neurochem; 2016 Aug; 138 Suppl 1():134-44. PubMed ID: 27087014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The emerging roles of microRNAs in the pathogenesis of frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum disorders.
    Gascon E; Gao FB
    J Neurogenet; 2014; 28(1-2):30-40. PubMed ID: 24506814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.