These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25083409)

  • 21. Seasonal pattern of lesion development in diseased Fraxinus excelsior infected by Hymenoscyphus pseudoalbidus.
    Bengtsson SB; Barklund P; von Brömssen C; Stenlid J
    PLoS One; 2014; 9(4):e76429. PubMed ID: 24759550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Possible Biological Control of Ash Dieback Using the Mycoparasite Hymenoscyphus Fraxineus Mitovirus 2.
    Shamsi W; Mittelstrass J; Ulrich S; Kondo H; Rigling D; Prospero S
    Phytopathology; 2024 May; 114(5):1020-1027. PubMed ID: 38114080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Climate change and the ash dieback crisis.
    Goberville E; Hautekèete NC; Kirby RR; Piquot Y; Luczak C; Beaugrand G
    Sci Rep; 2016 Oct; 6():35303. PubMed ID: 27739483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus.
    Cross H; Sønstebø JH; Nagy NE; Timmermann V; Solheim H; Børja I; Kauserud H; Carlsen T; Rzepka B; Wasak K; Vivian-Smith A; Hietala AM
    New Phytol; 2017 Feb; 213(3):1405-1417. PubMed ID: 27716950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Population structure of the ash dieback pathogen,
    Orton ES; Brasier CM; Bilham LJ; Bansal A; Webber JF; Brown JKM
    Plant Pathol; 2018 Feb; 67(2):255-264. PubMed ID: 29527064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Canditate metabolites for ash dieback tolerance in Fraxinus excelsior.
    Nemesio-Gorriz M; Menezes RC; Paetz C; Hammerbacher A; Steenackers M; Schamp K; Höfte M; Svatoš A; Gershenzon J; Douglas GC
    J Exp Bot; 2020 Oct; 71(19):6074-6083. PubMed ID: 32598444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ability of the ash dieback pathogen to reproduce and to induce damage on its host are controlled by different environmental parameters.
    Marçais B; Giraudel A; Husson C
    PLoS Pathog; 2023 Apr; 19(4):e1010558. PubMed ID: 37079641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fungal endophytes in Fraxinus excelsior petioles and their in vitro antagonistic potential against the ash dieback pathogen Hymenoscyphus fraxineus.
    Bilański P; Kowalski T
    Microbiol Res; 2022 Apr; 257():126961. PubMed ID: 35042053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A volatile lactone of Hymenoscyphus pseudoalbidus, pathogen of European ash dieback, inhibits host germination.
    Citron CA; Junker C; Schulz B; Dickschat JS
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4346-9. PubMed ID: 24644234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing Ash Leaf-Colonizing Fungal Communities for Their Biological Control of
    Becker R; Ulrich K; Behrendt U; Kube M; Ulrich A
    Front Microbiol; 2020; 11():590944. PubMed ID: 33193255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in the Detection of Emerging Tree Diseases by Measurements of VOCs and
    Borowik P; Oszako T; Malewski T; Zwierzyńska Z; Adamowicz L; Tarakowski R; Ślusarski S; Nowakowska JA
    Pathogens; 2021 Oct; 10(11):. PubMed ID: 34832516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus.
    Fones HN; Mardon C; Gurr SJ
    Sci Rep; 2016 Oct; 6():34638. PubMed ID: 27694963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reproductive mode and life cycle of the ash dieback pathogen Hymenoscyphus pseudoalbidus.
    Gross A; Zaffarano PL; Duo A; Grünig CR
    Fungal Genet Biol; 2012 Dec; 49(12):977-86. PubMed ID: 23036580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Friend or foe? Biological and ecological traits of the European ash dieback pathogen Hymenoscyphus fraxineus in its native environment.
    Cleary M; Nguyen D; Marčiulynienė D; Berlin A; Vasaitis R; Stenlid J
    Sci Rep; 2016 Feb; 6():21895. PubMed ID: 26900083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel RNA viruses from the native range of Hymenoscyphus fraxineus, the causal fungal agent of ash dieback.
    Shamsi W; Kondo H; Ulrich S; Rigling D; Prospero S
    Virus Res; 2022 Oct; 320():198901. PubMed ID: 36058013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Comparative Analysis of Ash Leaf-Colonizing Bacterial Communities Identifies Putative Antagonists of
    Ulrich K; Becker R; Behrendt U; Kube M; Ulrich A
    Front Microbiol; 2020; 11():966. PubMed ID: 32547506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus.
    Gross A; Hosoya T; Queloz V
    Mol Ecol; 2014 Jun; 23(12):2943-60. PubMed ID: 24819666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fungicolous Fungi on Pseudosclerotial Plates and Apothecia of
    Kowalski T; Bilański P
    Microorganisms; 2022 Nov; 10(11):. PubMed ID: 36422320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal Communities in Re-Emerging
    Bakys R; Bajerkevičienė G; Pliūra A; Marčiulynas A; Marčiulynienė D; Lynikienė J; Mishcherikova V; Menkis A
    Microorganisms; 2022 Sep; 10(10):. PubMed ID: 36296216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The ash dieback invasion of Europe was founded by two genetically divergent individuals.
    McMullan M; Rafiqi M; Kaithakottil G; Clavijo BJ; Bilham L; Orton E; Percival-Alwyn L; Ward BJ; Edwards A; Saunders DGO; Garcia Accinelli G; Wright J; Verweij W; Koutsovoulos G; Yoshida K; Hosoya T; Williamson L; Jennings P; Ioos R; Husson C; Hietala AM; Vivian-Smith A; Solheim H; MaClean D; Fosker C; Hall N; Brown JKM; Swarbreck D; Blaxter M; Downie JA; Clark MD
    Nat Ecol Evol; 2018 Jun; 2(6):1000-1008. PubMed ID: 29686237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.