These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 25083643)
1. Measurement of the hyperfine quenching rate of the clock transition in 171YB. Xu CY; Singh J; Zappala JC; Bailey KG; Dietrich MR; Greene JP; Jiang W; Lemke ND; Lu ZT; Mueller P; O'Connor TP Phys Rev Lett; 2014 Jul; 113(3):033003. PubMed ID: 25083643 [TBL] [Abstract][Full Text] [Related]
2. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks. Akamatsu D; Yasuda M; Inaba H; Hosaka K; Tanabe T; Onae A; Hong FL Opt Express; 2014 Apr; 22(7):7898-905. PubMed ID: 24718165 [TBL] [Abstract][Full Text] [Related]
3. Intercombination line frequencies in Jones DM; van Kann F; McFerran JJ Appl Opt; 2023 May; 62(15):3932-3940. PubMed ID: 37706703 [TBL] [Abstract][Full Text] [Related]
4. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium. Hoyt CW; Barber ZW; Oates CW; Fortier TM; Diddams SA; Hollberg L Phys Rev Lett; 2005 Aug; 95(8):083003. PubMed ID: 16196856 [TBL] [Abstract][Full Text] [Related]
5. Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant. Safronova MS; Porsev SG; Sanner C; Ye J Phys Rev Lett; 2018 Apr; 120(17):173001. PubMed ID: 29756836 [TBL] [Abstract][Full Text] [Related]
6. Electronic spectroscopy of ytterbium in a neon matrix. Lambo R; Buchachenko AA; Wu L; Tan Y; Wang J; Sun YR; Liu AW; Hu SM J Chem Phys; 2012 Nov; 137(20):204315. PubMed ID: 23206011 [TBL] [Abstract][Full Text] [Related]
7. High-accuracy optical clock based on the octupole transition in 171Yb+. Huntemann N; Okhapkin M; Lipphardt B; Weyers S; Tamm C; Peik E Phys Rev Lett; 2012 Mar; 108(9):090801. PubMed ID: 22463621 [TBL] [Abstract][Full Text] [Related]
8. Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms. Reichenbach I; Deutsch IH Phys Rev Lett; 2007 Sep; 99(12):123001. PubMed ID: 17930500 [TBL] [Abstract][Full Text] [Related]
9. Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts. Safronova MS; Porsev SG; Clark CW Phys Rev Lett; 2012 Dec; 109(23):230802. PubMed ID: 23368178 [TBL] [Abstract][Full Text] [Related]
11. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition. Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514 [TBL] [Abstract][Full Text] [Related]
12. Frequency references based on molecular iodine for the study of Yb atoms using the Tanabe Y; Sakamoto Y; Kohno T; Akamatsu D; Hong FL Opt Express; 2022 Dec; 30(26):46487-46500. PubMed ID: 36558601 [TBL] [Abstract][Full Text] [Related]
13. [Measurement of the Rb[5P3/2(F'=4)] hyperfine level nonradiative decay rate near a metallic film with laser retrofluoresence spectroscopy]. Liu J; Xin JT; Dai K; Shen YF Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):6-9. PubMed ID: 19385194 [TBL] [Abstract][Full Text] [Related]
14. Optical excitation and decay dynamics of ytterbium atoms embedded in a solid neon matrix. Xu CY; Hu SM; Singh J; Bailey K; Lu ZT; Mueller P; O'Connor TP; Welp U Phys Rev Lett; 2011 Aug; 107(9):093001. PubMed ID: 21929234 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb. Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880 [TBL] [Abstract][Full Text] [Related]
16. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×10(-15). McFerran JJ; Yi L; Mejri S; Di Manno S; Zhang W; Guéna J; Le Coq Y; Bize S Phys Rev Lett; 2012 May; 108(18):183004. PubMed ID: 22681071 [TBL] [Abstract][Full Text] [Related]
17. Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. Bize S; Diddams SA; Tanaka U; Tanner CE; Oskay WH; Drullinger RE; Parker TE; Heavner TP; Jefferts SR; Hollberg L; Itano WM; Bergquist JC Phys Rev Lett; 2003 Apr; 90(15):150802. PubMed ID: 12732024 [TBL] [Abstract][Full Text] [Related]
18. Observation of the cesium clock transition in laser-cooled atoms. Sesko DW; Wieman CE Opt Lett; 1989 Mar; 14(5):269-71. PubMed ID: 19749891 [TBL] [Abstract][Full Text] [Related]
19. Uncertainty Evaluation of an Kobayashi T; Akamatsu D; Hisai Y; Tanabe T; Inaba H; Suzuyama T; Hong FL; Hosaka K; Yasuda M IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2449-2458. PubMed ID: 30235125 [TBL] [Abstract][Full Text] [Related]
20. Determination of the xenon 6s[3/2](2)-6s'[1/2](0) clock frequency by interferometric wavelength measurements. Sterr U; Bard A; Sansonetti CJ; Rolston SL; Gillaspy JD Opt Lett; 1995 Jun; 20(12):1421-3. PubMed ID: 19862035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]