These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 25083742)
1. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Luan F; Kleandrova VV; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN Nanoscale; 2014 Sep; 6(18):10623-30. PubMed ID: 25083742 [TBL] [Abstract][Full Text] [Related]
2. Computational ecotoxicology: simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions. Kleandrova VV; Luan F; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN Environ Int; 2014 Dec; 73():288-94. PubMed ID: 25173945 [TBL] [Abstract][Full Text] [Related]
3. Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Kleandrova VV; Luan F; González-Díaz H; Ruso JM; Speck-Planche A; Cordeiro MN Environ Sci Technol; 2014 Dec; 48(24):14686-94. PubMed ID: 25384130 [TBL] [Abstract][Full Text] [Related]
4. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory. Concu R; Kleandrova VV; Speck-Planche A; Cordeiro MNDS Nanotoxicology; 2017 Sep; 11(7):891-906. PubMed ID: 28937298 [TBL] [Abstract][Full Text] [Related]
5. Nano-QSAR Model for Predicting Cell Viability of Human Embryonic Kidney Cells. Manganelli S; Benfenati E Methods Mol Biol; 2017; 1601():275-290. PubMed ID: 28470534 [TBL] [Abstract][Full Text] [Related]
6. Computational modeling in nanomedicine: prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model. Speck-Planche A; Kleandrova VV; Luan F; Cordeiro MN Nanomedicine (Lond); 2015 Jan; 10(2):193-204. PubMed ID: 25600965 [TBL] [Abstract][Full Text] [Related]
7. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Basant N; Gupta S Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981 [TBL] [Abstract][Full Text] [Related]
8. A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles. Halder AK; Melo A; Cordeiro MNDS Chemosphere; 2020 Apr; 244():125489. PubMed ID: 31812055 [TBL] [Abstract][Full Text] [Related]
9. Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Li Y; Sun L; Jin M; Du Z; Liu X; Guo C; Li Y; Huang P; Sun Z Toxicol In Vitro; 2011 Oct; 25(7):1343-52. PubMed ID: 21575712 [TBL] [Abstract][Full Text] [Related]
10. Risk assessment of heterogeneous TiO Roy J; Ojha PK; Roy K Nanotoxicology; 2019 Jun; 13(5):701-716. PubMed ID: 30938199 [TBL] [Abstract][Full Text] [Related]
11. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Ahamed M; Ali D; Alhadlaq HA; Akhtar MJ Chemosphere; 2013 Nov; 93(10):2514-22. PubMed ID: 24139157 [TBL] [Abstract][Full Text] [Related]
12. Effect of composition, morphology and size of nanozeolite on its in vitro cytotoxicity. Kihara T; Zhang Y; Hu Y; Mao Q; Tang Y; Miyake J J Biosci Bioeng; 2011 Jun; 111(6):725-30. PubMed ID: 21393058 [TBL] [Abstract][Full Text] [Related]
13. The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies. Dong X; Wu Z; Li X; Xiao L; Yang M; Li Y; Duan J; Sun Z Int J Nanomedicine; 2020; 15():9089-9113. PubMed ID: 33244229 [TBL] [Abstract][Full Text] [Related]
14. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Winkler DA; Mombelli E; Pietroiusti A; Tran L; Worth A; Fadeel B; McCall MJ Toxicology; 2013 Nov; 313(1):15-23. PubMed ID: 23165187 [TBL] [Abstract][Full Text] [Related]
15. Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Xu M; Fujita D; Kajiwara S; Minowa T; Li X; Takemura T; Iwai H; Hanagata N Biomaterials; 2010 Nov; 31(31):8022-31. PubMed ID: 20688385 [TBL] [Abstract][Full Text] [Related]
16. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Sayes CM; Reed KL; Warheit DB Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066 [TBL] [Abstract][Full Text] [Related]
17. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Passagne I; Morille M; Rousset M; Pujalté I; L'azou B Toxicology; 2012 Sep; 299(2-3):112-24. PubMed ID: 22627296 [TBL] [Abstract][Full Text] [Related]
18. An Experimental and Computational Approach to the Development of ZnO Nanoparticles that are Safe by Design. Le TC; Yin H; Chen R; Chen Y; Zhao L; Casey PS; Chen C; Winkler DA Small; 2016 Jul; 12(26):3568-77. PubMed ID: 27167706 [TBL] [Abstract][Full Text] [Related]
19. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect. Kleandrova VV; Luan F; Speck-Planche A; Cordeiro MN Mini Rev Med Chem; 2015; 15(8):677-86. PubMed ID: 25694074 [TBL] [Abstract][Full Text] [Related]
20. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Kar S; Gajewicz A; Puzyn T; Roy K; Leszczynski J Ecotoxicol Environ Saf; 2014 Sep; 107():162-9. PubMed ID: 24949897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]