BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25083742)

  • 1. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach.
    Luan F; Kleandrova VV; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN
    Nanoscale; 2014 Sep; 6(18):10623-30. PubMed ID: 25083742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational ecotoxicology: simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions.
    Kleandrova VV; Luan F; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN
    Environ Int; 2014 Dec; 73():288-94. PubMed ID: 25173945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions.
    Kleandrova VV; Luan F; González-Díaz H; Ruso JM; Speck-Planche A; Cordeiro MN
    Environ Sci Technol; 2014 Dec; 48(24):14686-94. PubMed ID: 25384130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory.
    Concu R; Kleandrova VV; Speck-Planche A; Cordeiro MNDS
    Nanotoxicology; 2017 Sep; 11(7):891-906. PubMed ID: 28937298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-QSAR Model for Predicting Cell Viability of Human Embryonic Kidney Cells.
    Manganelli S; Benfenati E
    Methods Mol Biol; 2017; 1601():275-290. PubMed ID: 28470534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling in nanomedicine: prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model.
    Speck-Planche A; Kleandrova VV; Luan F; Cordeiro MN
    Nanomedicine (Lond); 2015 Jan; 10(2):193-204. PubMed ID: 25600965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides.
    Basant N; Gupta S
    Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles.
    Halder AK; Melo A; Cordeiro MNDS
    Chemosphere; 2020 Apr; 244():125489. PubMed ID: 31812055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells.
    Li Y; Sun L; Jin M; Du Z; Liu X; Guo C; Li Y; Huang P; Sun Z
    Toxicol In Vitro; 2011 Oct; 25(7):1343-52. PubMed ID: 21575712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk assessment of heterogeneous TiO
    Roy J; Ojha PK; Roy K
    Nanotoxicology; 2019 Jun; 13(5):701-716. PubMed ID: 30938199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2).
    Ahamed M; Ali D; Alhadlaq HA; Akhtar MJ
    Chemosphere; 2013 Nov; 93(10):2514-22. PubMed ID: 24139157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of composition, morphology and size of nanozeolite on its in vitro cytotoxicity.
    Kihara T; Zhang Y; Hu Y; Mao Q; Tang Y; Miyake J
    J Biosci Bioeng; 2011 Jun; 111(6):725-30. PubMed ID: 21393058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies.
    Dong X; Wu Z; Li X; Xiao L; Yang M; Li Y; Duan J; Sun Z
    Int J Nanomedicine; 2020; 15():9089-9113. PubMed ID: 33244229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.
    Winkler DA; Mombelli E; Pietroiusti A; Tran L; Worth A; Fadeel B; McCall MJ
    Toxicology; 2013 Nov; 313(1):15-23. PubMed ID: 23165187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of physicochemical characteristics of nano-oxides to cytotoxicity.
    Xu M; Fujita D; Kajiwara S; Minowa T; Li X; Takemura T; Iwai H; Hanagata N
    Biomaterials; 2010 Nov; 31(31):8022-31. PubMed ID: 20688385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells.
    Passagne I; Morille M; Rousset M; Pujalté I; L'azou B
    Toxicology; 2012 Sep; 299(2-3):112-24. PubMed ID: 22627296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Experimental and Computational Approach to the Development of ZnO Nanoparticles that are Safe by Design.
    Le TC; Yin H; Chen R; Chen Y; Zhao L; Casey PS; Chen C; Winkler DA
    Small; 2016 Jul; 12(26):3568-77. PubMed ID: 27167706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.
    Kleandrova VV; Luan F; Speck-Planche A; Cordeiro MN
    Mini Rev Med Chem; 2015; 15(8):677-86. PubMed ID: 25694074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach.
    Kar S; Gajewicz A; Puzyn T; Roy K; Leszczynski J
    Ecotoxicol Environ Saf; 2014 Sep; 107():162-9. PubMed ID: 24949897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.