These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 25083813)
21. Spatial mapping of proteoglycan content in articular cartilage using near-infrared (NIR) spectroscopy. Afara IO; Moody H; Singh S; Prasadam I; Oloyede A Biomed Opt Express; 2015 Jan; 6(1):144-54. PubMed ID: 25657883 [TBL] [Abstract][Full Text] [Related]
22. Near Infrared Spectroscopy Enables Differentiation of Mechanically and Enzymatically Induced Cartilage Injuries. Nippolainen E; Shaikh R; Virtanen V; Rieppo L; Saarakkala S; Töyräs J; Afara IO Ann Biomed Eng; 2020 Sep; 48(9):2343-2353. PubMed ID: 32300956 [TBL] [Abstract][Full Text] [Related]
23. Load-unloading response of intact and artificially degraded articular cartilage correlated with near infrared (NIR) absorption spectra. Afara IO; Singh S; Oloyede A J Mech Behav Biomed Mater; 2013 Apr; 20():249-58. PubMed ID: 23384759 [TBL] [Abstract][Full Text] [Related]
24. Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage. Afara I; Singh S; Oloyede A Med Eng Phys; 2013 Jan; 35(1):88-95. PubMed ID: 22824725 [TBL] [Abstract][Full Text] [Related]
25. Immunolocalization of matrix proteins in different human cartilage subtypes. Wachsmuth L; Söder S; Fan Z; Finger F; Aigner T Histol Histopathol; 2006 May; 21(5):477-85. PubMed ID: 16493578 [TBL] [Abstract][Full Text] [Related]
26. Monitoring the Progression of Spontaneous Articular Cartilage Healing with Infrared Spectroscopy. O'Brien MP; Penmatsa M; Palukuru U; West P; Yang X; Bostrom MP; Freeman T; Pleshko N Cartilage; 2015 Jul; 6(3):174-84. PubMed ID: 26175863 [TBL] [Abstract][Full Text] [Related]
27. [Possibilities of near-infrared spectroscopy for the assessment of principle components in honey]. Tu ZH; Ji BP; Meng CY; Zhu DZ; Wang LG; Qing ZS Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3291-4. PubMed ID: 20210153 [TBL] [Abstract][Full Text] [Related]
28. Applications of Vibrational Spectroscopy for Analysis of Connective Tissues. Querido W; Kandel S; Pleshko N Molecules; 2021 Feb; 26(4):. PubMed ID: 33572384 [TBL] [Abstract][Full Text] [Related]
29. Wavelength-dependent penetration depth of near infrared radiation into cartilage. Padalkar MV; Pleshko N Analyst; 2015 Apr; 140(7):2093-100. PubMed ID: 25630381 [TBL] [Abstract][Full Text] [Related]
30. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review]. Tao LL; Yang XJ; Deng JM; Zhang X Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3002-9. PubMed ID: 24555369 [TBL] [Abstract][Full Text] [Related]
31. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis. Li T; Su C Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():131-140. PubMed ID: 29925045 [TBL] [Abstract][Full Text] [Related]
32. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Luo Z; Jiang L; Xu Y; Li H; Xu W; Wu S; Wang Y; Tang Z; Lv Y; Yang L Biomaterials; 2015 Jun; 52():463-75. PubMed ID: 25818452 [TBL] [Abstract][Full Text] [Related]
33. Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging. Potter K; Kidder LH; Levin IW; Lewis EN; Spencer RG Arthritis Rheum; 2001 Apr; 44(4):846-55. PubMed ID: 11315924 [TBL] [Abstract][Full Text] [Related]
34. Extracellular matrix of connective tissues in the heads of teleosts. Benjamin M; Ralphs JR J Anat; 1991 Dec; 179():137-48. PubMed ID: 1817131 [TBL] [Abstract][Full Text] [Related]
35. [Optimizing spectral region in using near-infrared spectroscopy for donkey milk analysis]. Zheng LM; Zhang LD; Guo HY; Pang K; Zhang WJ; Ren FZ Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2224-7. PubMed ID: 18260400 [TBL] [Abstract][Full Text] [Related]
36. Fast determination of two atractylenolides in Rhizoma Atractylodis Macrocephalae by Fourier transform near-infrared spectroscopy with partial least squares. Shao QS; Zhang AL; Ye WW; Guo HP; Hu RH Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():499-504. PubMed ID: 24211810 [TBL] [Abstract][Full Text] [Related]
37. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Li A; Wei Y; Hung C; Vunjak-Novakovic G Biomaterials; 2018 Aug; 173():47-57. PubMed ID: 29758546 [TBL] [Abstract][Full Text] [Related]
38. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR). Genisheva Z; Quintelas C; Mesquita DP; Ferreira EC; Oliveira JM; Amaral AL Food Chem; 2018 Apr; 246():172-178. PubMed ID: 29291836 [TBL] [Abstract][Full Text] [Related]
39. Prediction of α-Lactalbumin and β-Lactoglobulin Composition of Aqueous Whey Solutions Using Fourier Transform Mid-Infrared Spectroscopy and Near-Infrared Spectroscopy. Tonolini M; Sørensen KM; Skou PB; Ray C; Engelsen SB Appl Spectrosc; 2021 Jun; 75(6):718-727. PubMed ID: 33231482 [TBL] [Abstract][Full Text] [Related]
40. Isolation of Chondrons from Hyaline Cartilage. Korpershoek JV; Rikkers M; Vonk LA Methods Mol Biol; 2023; 2598():21-27. PubMed ID: 36355282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]