These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 25083918)
1. Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly. He L; Aleksandrov AA; An J; Cui L; Yang Z; Brouillette CG; Riordan JR J Mol Biol; 2015 Jan; 427(1):106-20. PubMed ID: 25083918 [TBL] [Abstract][Full Text] [Related]
2. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. Lewis HA; Zhao X; Wang C; Sauder JM; Rooney I; Noland BW; Lorimer D; Kearins MC; Conners K; Condon B; Maloney PC; Guggino WB; Hunt JF; Emtage S J Biol Chem; 2005 Jan; 280(2):1346-53. PubMed ID: 15528182 [TBL] [Abstract][Full Text] [Related]
3. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy. Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971 [TBL] [Abstract][Full Text] [Related]
4. Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Rabeh WM; Bossard F; Xu H; Okiyoneda T; Bagdany M; Mulvihill CM; Du K; di Bernardo S; Liu Y; Konermann L; Roldan A; Lukacs GL Cell; 2012 Jan; 148(1-2):150-63. PubMed ID: 22265408 [TBL] [Abstract][Full Text] [Related]
5. A novel natural product compound enhances cAMP-regulated chloride conductance of cells expressing CFTR[delta]F508. deCarvalho AC; Ndi CP; Tsopmo A; Tane P; Ayafor J; Connolly JD; Teem JL Mol Med; 2002 Feb; 8(2):75-87. PubMed ID: 12080183 [TBL] [Abstract][Full Text] [Related]
6. Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR. Aleksandrov AA; Kota P; Aleksandrov LA; He L; Jensen T; Cui L; Gentzsch M; Dokholyan NV; Riordan JR J Mol Biol; 2010 Aug; 401(2):194-210. PubMed ID: 20561529 [TBL] [Abstract][Full Text] [Related]
7. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. Jih KY; Li M; Hwang TC; Bompadre SG J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785 [TBL] [Abstract][Full Text] [Related]
8. ΔF508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter. Phuan PW; Veit G; Tan JA; Roldan A; Finkbeiner WE; Haggie PM; Lukacs GL; Verkman AS SLAS Discov; 2018 Sep; 23(8):823-831. PubMed ID: 29533733 [TBL] [Abstract][Full Text] [Related]
12. Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Pagano MA; Arrigoni G; Marin O; Sarno S; Meggio F; Treharne KJ; Mehta A; Pinna LA Biochemistry; 2008 Jul; 47(30):7925-36. PubMed ID: 18597485 [TBL] [Abstract][Full Text] [Related]
13. The primary folding defect and rescue of ΔF508 CFTR emerge during translation of the mutant domain. Hoelen H; Kleizen B; Schmidt A; Richardson J; Charitou P; Thomas PJ; Braakman I PLoS One; 2010 Nov; 5(11):e15458. PubMed ID: 21152102 [TBL] [Abstract][Full Text] [Related]
14. Differential Scanning Fluorimetry and Hydrogen Deuterium Exchange Mass Spectrometry to Monitor the Conformational Dynamics of NBD1 in Cystic Fibrosis. Soya N; Roldan A; Lukacs GL Methods Mol Biol; 2019; 1873():53-67. PubMed ID: 30341603 [TBL] [Abstract][Full Text] [Related]
15. Restoration of domain folding and interdomain assembly by second-site suppressors of the DeltaF508 mutation in CFTR. He L; Aleksandrov LA; Cui L; Jensen TJ; Nesbitt KL; Riordan JR FASEB J; 2010 Aug; 24(8):3103-12. PubMed ID: 20233947 [TBL] [Abstract][Full Text] [Related]
16. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Du K; Sharma M; Lukacs GL Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635 [TBL] [Abstract][Full Text] [Related]
17. Domain-interface dynamics of CFTR revealed by stabilizing nanobodies. Sigoillot M; Overtus M; Grodecka M; Scholl D; Garcia-Pino A; Laeremans T; He L; Pardon E; Hildebrandt E; Urbatsch I; Steyaert J; Riordan JR; Govaerts C Nat Commun; 2019 Jun; 10(1):2636. PubMed ID: 31201318 [TBL] [Abstract][Full Text] [Related]
18. Protein kinase CK2, cystic fibrosis transmembrane conductance regulator, and the deltaF508 mutation: F508 deletion disrupts a kinase-binding site. Treharne KJ; Crawford RM; Xu Z; Chen JH; Best OG; Schulte EA; Gruenert DC; Wilson SM; Sheppard DN; Kunzelmann K; Mehta A J Biol Chem; 2007 Apr; 282(14):10804-13. PubMed ID: 17289674 [TBL] [Abstract][Full Text] [Related]
19. Requirements for efficient correction of ΔF508 CFTR revealed by analyses of evolved sequences. Mendoza JL; Schmidt A; Li Q; Nuvaga E; Barrett T; Bridges RJ; Feranchak AP; Brautigam CA; Thomas PJ Cell; 2012 Jan; 148(1-2):164-74. PubMed ID: 22265409 [TBL] [Abstract][Full Text] [Related]
20. Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. Lewis HA; Wang C; Zhao X; Hamuro Y; Conners K; Kearins MC; Lu F; Sauder JM; Molnar KS; Coales SJ; Maloney PC; Guggino WB; Wetmore DR; Weber PC; Hunt JF J Mol Biol; 2010 Feb; 396(2):406-30. PubMed ID: 19944699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]