BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25084369)

  • 1. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone.
    Cardenas J; Da Silva NA
    Metab Eng; 2014 Sep; 25():194-203. PubMed ID: 25084369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triacetic acid lactone production in industrial Saccharomyces yeast strains.
    Saunders LP; Bowman MJ; Mertens JA; Da Silva NA; Hector RE
    J Ind Microbiol Biotechnol; 2015 May; 42(5):711-21. PubMed ID: 25682106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A coupled in vitro/in vivo approach for engineering a heterologous type III PKS to enhance polyketide biosynthesis in Saccharomyces cerevisiae.
    Vickery CR; Cardenas J; Bowman ME; Burkart MD; Da Silva NA; Noel JP
    Biotechnol Bioeng; 2018 Jun; 115(6):1394-1402. PubMed ID: 29457628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone.
    Cao M; Tran VG; Qin J; Olson A; Mishra S; Schultz JC; Huang C; Xie D; Zhao H
    Biotechnol Bioeng; 2022 Sep; 119(9):2529-2540. PubMed ID: 35701887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis.
    Yu J; Landberg J; Shavarebi F; Bilanchone V; Okerlund A; Wanninayake U; Zhao L; Kraus G; Sandmeyer S
    Biotechnol Bioeng; 2018 Sep; 115(9):2383-2388. PubMed ID: 29777591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica.
    Liu H; Marsafari M; Wang F; Deng L; Xu P
    Metab Eng; 2019 Dec; 56():60-68. PubMed ID: 31470116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial synthesis of triacetic acid lactone.
    Xie D; Shao Z; Achkar J; Zha W; Frost JW; Zhao H
    Biotechnol Bioeng; 2006 Mar; 93(4):727-36. PubMed ID: 16245348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Engineering of
    Feng L; Xu J; Ye C; Gao J; Huang L; Xu Z; Lian J
    J Fungi (Basel); 2023 Apr; 9(4):. PubMed ID: 37108948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM; Kozak BU; Pronk JT; van Maris AJA
    Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triacetic acid lactone production using 2-pyrone synthase expressing Yarrowia lipolytica via targeted gene deletion.
    Matsuoka Y; Fujie N; Nakano M; Koshiba A; Kondo A; Tanaka T
    J Biosci Bioeng; 2023 Oct; 136(4):320-326. PubMed ID: 37574415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering de novo anthocyanin production in Saccharomyces cerevisiae.
    Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J
    Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter.
    Tang SY; Qian S; Akinterinwa O; Frei CS; Gredell JA; Cirino PC
    J Am Chem Soc; 2013 Jul; 135(27):10099-103. PubMed ID: 23786422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Escherichia coli to increase triacetic acid lactone (TAL) production using an optimized TAL sensor-reporter system.
    Li Y; Qian S; Dunn R; Cirino PC
    J Ind Microbiol Biotechnol; 2018 Sep; 45(9):789-793. PubMed ID: 30046952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewiring
    Markham KA; Palmer CM; Chwatko M; Wagner JM; Murray C; Vazquez S; Swaminathan A; Chakravarty I; Lynd NA; Alper HS
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2096-2101. PubMed ID: 29440400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae.
    Curran KA; Leavitt JM; Karim AS; Alper HS
    Metab Eng; 2013 Jan; 15():55-66. PubMed ID: 23164574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.