These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25084579)

  • 1. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.
    Li G; Gao H; Li Y; Yang H
    J Environ Sci (China); 2011 Jun; 23 Suppl():S146-8. PubMed ID: 25084579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of 4-chlorophenol from spent powdered activated carbon by ultrasound.
    Zhang T; Yang Y; Li X; Wang N; Zhou Z
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):9161-9173. PubMed ID: 30715713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.
    Shen J; Kaur I; Baktash MM; He Z; Ni Y
    Bioresour Technol; 2013 Jan; 127():59-65. PubMed ID: 23131623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of natural organic matter adsorption capacities of super-powdered activated carbon and powdered activated Carbon.
    Ando N; Matsui Y; Kurotobi R; Nakano Y; Matsushita T; Ohno K
    Water Res; 2010 Jul; 44(14):4127-36. PubMed ID: 20561665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC).
    Humbert H; Gallard H; Suty H; Croué JP
    Water Res; 2008 Mar; 42(6-7):1635-43. PubMed ID: 18006038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposition of 2,2',4,4',5,5'-hexachlorobiphenyl with iron supported on an activated carbon from an ion-exchange resin.
    Sun Y; Takaoka M; Takeda N; Wang W; Zeng X; Zhu T
    Chemosphere; 2012 Aug; 88(7):895-902. PubMed ID: 22560977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of anionic contaminants by surfactant modified powdered activated carbon (SM-PAC) combined with ultrafiltration.
    Hong HJ; Kim H; Lee YJ; Yang JW
    J Hazard Mater; 2009 Oct; 170(2-3):1242-6. PubMed ID: 19540668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption characteristics of chloramphenicol onto powdered activated carbon and its desorption performance by ultrasound.
    Zhang T; Yang Y; Li X; Jiang Y; Fan X; Du P; Li H; Wang N; Zhou Z
    Environ Technol; 2021 Jan; 42(4):571-583. PubMed ID: 31244389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption characteristics of vanadium on different resin-active carbon composite electrodes in capacitive deionization.
    Cui Y; Bao S; Zhang Y; Duan J
    Chemosphere; 2018 Dec; 212():34-40. PubMed ID: 30138853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water softening by combination of ultrasound and ion exchange.
    Entezari MH; Tahmasbi M
    Ultrason Sonochem; 2009 Mar; 16(3):356-60. PubMed ID: 19014894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse osmosis concentrate treatment via a PAC-MF accumulative countercurrent adsorption process.
    Zhao C; Gu P; Cui H; Zhang G
    Water Res; 2012 Jan; 46(1):218-26. PubMed ID: 22082527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption capacity of powdered activated carbon for 3,5-dichlorophenol in activated sludge.
    Widjaja T; Miyata T; Nakano Y; Nishijima W; Okada M
    Chemosphere; 2004 Dec; 57(9):1219-24. PubMed ID: 15504483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor.
    Taddei MH; Macacini JF; Vicente R; Marumo JT; Sakata SK; Terremoto LA
    Appl Radiat Isot; 2013 Jul; 77():50-5. PubMed ID: 23524230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon.
    Matsui Y; Ando N; Sasaki H; Matsushita T; Ohno K
    Water Res; 2009 Jul; 43(12):3095-103. PubMed ID: 19457533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calcium on adsorption capacity of powdered activated carbon.
    Li G; Shang J; Wang Y; Li Y; Gao H
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S101-5. PubMed ID: 25078809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced coagulation with powdered activated carbon or MIEX secondary treatment: a comparison of disinfection by-product formation and precursor removal.
    Watson K; Farré MJ; Knight N
    Water Res; 2015 Jan; 68():454-66. PubMed ID: 25462752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of membrane bioreactors by the addition of powdered activated carbon.
    Ng CA; Sun D; Bashir MJ; Wai SH; Wong LY; Nisar H; Wu B; Fane AG
    Bioresour Technol; 2013 Jun; 138():38-47. PubMed ID: 23612160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon.
    Ikari M; Matsui Y; Suzuki Y; Matsushita T; Shirasaki N
    Water Res; 2015 Jan; 68():227-37. PubMed ID: 25462731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why low powdered activated carbon addition reduces membrane fouling in MBRs.
    Remy M; Potier V; Temmink H; Rulkens W
    Water Res; 2010 Feb; 44(3):861-7. PubMed ID: 19818984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.