BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25084604)

  • 21. In vitro and in vivo corrosion measurements of Mg-6Zn alloys in the bile.
    Chen Y; Yan J; Wang Z; Yu S; Wang X; Yuan Z; Zhang X; Zhao C; Zheng Q
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():116-23. PubMed ID: 25063100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.
    Jang Y; Tan Z; Jurey C; Xu Z; Dong Z; Collins B; Yun Y; Sankar J
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():28-40. PubMed ID: 25579893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure, mechanical property and corrosion behaviors of (HA+β-TCP)/Mg-5Sn composite with interpenetrating networks.
    Wang X; Li JT; Xie MY; Qu LJ; Zhang P; Li XL
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():386-92. PubMed ID: 26249605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.
    Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.
    Kannan MB; Orr L
    Biomed Mater; 2011 Aug; 6(4):045003. PubMed ID: 21636886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance.
    Ishizaki T; Sakamoto M
    Langmuir; 2011 Mar; 27(6):2375-81. PubMed ID: 21319782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition.
    Liu Y; Xue J; Luo D; Wang H; Gong X; Han Z; Ren L
    J Colloid Interface Sci; 2017 Apr; 491():313-320. PubMed ID: 28049056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of solid-solution and aging treatment on corrosion behavior of orthogonal designed and vacuum melted Mg-Zn-Ca-Mn alloys.
    Liu D; Zhou T; Liu Z; Guo B
    J Appl Biomater Funct Mater; 2020; 18():2280800019887906. PubMed ID: 31996069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg-5Zn-0.3Ca alloys.
    Hofstetter J; Martinelli E; Pogatscher S; Schmutz P; Povoden-Karadeniz E; Weinberg AM; Uggowitzer PJ; Löffler JF
    Acta Biomater; 2015 Sep; 23():347-353. PubMed ID: 25983315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.
    Zhang X; Yuan G; Mao L; Niu J; Fu P; Ding W
    J Mech Behav Biomed Mater; 2012 Mar; 7():77-86. PubMed ID: 22340687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural characteristics and corrosion behavior of biodegradable Mg-Zn, Mg-Zn-Gd alloys.
    Kubásek J; Vojtěch D
    J Mater Sci Mater Med; 2013 Jul; 24(7):1615-26. PubMed ID: 23529291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating.
    Rojaee R; Fathi M; Raeissi K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3817-25. PubMed ID: 23910282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mg-Zn-Y alloys with long-period stacking ordered structure: in vitro assessments of biodegradation behavior.
    Zhao X; Shi LL; Xu J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3627-37. PubMed ID: 23910258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research on an Mg-Zn alloy as a degradable biomaterial.
    Zhang S; Zhang X; Zhao C; Li J; Song Y; Xie C; Tao H; Zhang Y; He Y; Jiang Y; Bian Y
    Acta Biomater; 2010 Feb; 6(2):626-40. PubMed ID: 19545650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application.
    Xu L; Yu G; Zhang E; Pan F; Yang K
    J Biomed Mater Res A; 2007 Dec; 83(3):703-11. PubMed ID: 17549695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids.
    Alvarez-Lopez M; Pereda MD; del Valle JA; Fernandez-Lorenzo M; Garcia-Alonso MC; Ruano OA; Escudero ML
    Acta Biomater; 2010 May; 6(5):1763-71. PubMed ID: 19446048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys.
    Trinidad J; Arruebarrena G; Marco I; Hurtado I; Sáenz de Argandoña E
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1301-11. PubMed ID: 24048076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys.
    Lu Y; Bradshaw AR; Chiu YL; Jones IP
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():480-6. PubMed ID: 25579949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and properties of composite MAO/ECD coatings on magnesium alloy.
    Zhao Q; Guo X; Dang X; Hao J; Lai J; Wang K
    Colloids Surf B Biointerfaces; 2013 Feb; 102():321-6. PubMed ID: 23018022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of heat treatment on bond strength and corrosion resistance of sol-gel derived bioglass-ceramic coatings on magnesium alloy.
    Shen S; Cai S; Xu G; Zhao H; Niu S; Zhang R
    J Mech Behav Biomed Mater; 2015 May; 45():166-74. PubMed ID: 25728582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.