These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 25084658)

  • 1. Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores.
    Lenz CA; Vogel RF
    Food Microbiol; 2014 Dec; 44():156-67. PubMed ID: 25084658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of sporulation temperature on the high pressure resistance of Clostridium botulinum type E spores and the interconnection with sporulation medium cation contents.
    Lenz CA; Vogel RF
    Food Microbiol; 2015 Apr; 46():434-442. PubMed ID: 25475313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sporulation temperature on the resistance of Clostridium botulinum type A spores to thermal and high pressure processing.
    Marshall KM; Nowaczyk L; Morrissey TR; Loeza V; Halik LA; Skinner GE; Reddy NR; Fleischman GJ; Larkin JW
    J Food Prot; 2015 Jan; 78(1):146-50. PubMed ID: 25581189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of minerals on sporulation and heat resistance of Clostridium sporogenes.
    Mah JH; Kang DH; Tang J
    Int J Food Microbiol; 2008 Dec; 128(2):385-9. PubMed ID: 18986726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.
    Reddy NR; Tetzloff RC; Skinner GE
    Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Nontoxigenic Mutants of Nonproteolytic Clostridium botulinum NCTC 11219 by Insertional Mutagenesis and Gene Replacement.
    Clauwers C; Vanoirbeek K; Delbrassinne L; Michiels CW
    Appl Environ Microbiol; 2016 May; 82(10):3100-3108. PubMed ID: 26994073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotoxin synthesis is positively regulated by the sporulation transcription factor Spo0A in Clostridium botulinum type E.
    Mascher G; Mertaoja A; Korkeala H; Lindström M
    Environ Microbiol; 2017 Oct; 19(10):4287-4300. PubMed ID: 28809452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions.
    Wells-Bennik MHJ; Janssen PWM; Klaus V; Yang C; Zwietering MH; Den Besten HMW
    Int J Food Microbiol; 2019 Feb; 291():161-172. PubMed ID: 30504002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum.
    Reddy NR; Marshall KM; Morrissey TR; Loeza V; Patazca E; Skinner GE; Krishnamurthy K; Larkin JW
    J Food Prot; 2013 Aug; 76(8):1384-92. PubMed ID: 23905794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sporulation of Clostridium botulinum. I. Selection of an aparticulate sporulation medium.
    TSUJI K; PERKINS WE
    J Bacteriol; 1962 Jul; 84(1):81-5. PubMed ID: 13922872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High hydrostatic pressure-induced inactivation of bacterial spores.
    Sarker MR; Akhtar S; Torres JA; Paredes-Sabja D
    Crit Rev Microbiol; 2015 Feb; 41(1):18-26. PubMed ID: 23631742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High pressure thermal inactivation of Clostridium botulinum type E endospores - kinetic modeling and mechanistic insights.
    Lenz CA; Reineke K; Knorr D; Vogel RF
    Front Microbiol; 2015; 6():652. PubMed ID: 26191048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal and Pressure-Assisted Thermal Destruction Kinetics for Spores of Type A Clostridium botulinum and Clostridium sporogenes PA3679.
    Reddy NR; Patazca E; Morrissey TR; Skinner GE; Loeza V; Schill KM; Larkin JW
    J Food Prot; 2016 Feb; 79(2):253-62. PubMed ID: 26818986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of sporulation medium and divalent ions on the heat resistance of Alicyclobacillus acidoterrestris spores.
    Yamazaki K; Kawai Y; Inoue N; Shinano H
    Lett Appl Microbiol; 1997 Aug; 25(2):153-6. PubMed ID: 9281865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of non-proteolytic Clostridium botulinum type E in low-acid foods and phosphate buffer by heat and pressure.
    Maier MB; Schweiger T; Lenz CA; Vogel RF
    PLoS One; 2018; 13(7):e0200102. PubMed ID: 29969482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure.
    Nguyen Thi Minh H; Durand A; Loison P; Perrier-Cornet JM; Gervais P
    Appl Microbiol Biotechnol; 2011 May; 90(4):1409-17. PubMed ID: 21380515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products.
    Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H
    Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sporulation Strategies and Potential Role of the Exosporium in Survival and Persistence of
    Portinha IM; Douillard FP; Korkeala H; Lindström M
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054941
    [No Abstract]   [Full Text] [Related]  

  • 20. Pressure-Based Strategy for the Inactivation of Spores.
    Lenz CA; Vogel RF
    Subcell Biochem; 2015; 72():469-537. PubMed ID: 26174396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.