BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25084805)

  • 1. cMET in triple-negative breast cancer: is it a therapeutic target for this subset of breast cancer patients?
    Gaule PB; Crown J; O'Donovan N; Duffy MJ
    Expert Opin Ther Targets; 2014 Sep; 18(9):999-1009. PubMed ID: 25084805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer.
    Kim YJ; Choi JS; Seo J; Song JY; Lee SE; Kwon MJ; Kwon MJ; Kundu J; Jung K; Oh E; Shin YK; Choi YL
    Int J Cancer; 2014 May; 134(10):2424-36. PubMed ID: 24615768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer.
    Allard B; Turcotte M; Stagg J
    Expert Opin Ther Targets; 2014 Aug; 18(8):863-81. PubMed ID: 24798880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cMET as a potential therapeutic target in gastric cancer (Review).
    Teng L; Lu J
    Int J Mol Med; 2013 Dec; 32(6):1247-54. PubMed ID: 24141315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dasatinib is synergistic with cetuximab and cisplatin in triple-negative breast cancer cells.
    Kim EM; Mueller K; Gartner E; Boerner J
    J Surg Res; 2013 Nov; 185(1):231-9. PubMed ID: 23899511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P53 mutations in triple negative breast cancer upregulate endosomal recycling of epidermal growth factor receptor (EGFR) increasing its oncogenic potency.
    Shapira I; Lee A; Vora R; Budman DR
    Crit Rev Oncol Hematol; 2013 Nov; 88(2):284-92. PubMed ID: 23755891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress of antibody-based inhibitors of the HGF-cMET axis in cancer therapy.
    Kim KH; Kim H
    Exp Mol Med; 2017 Mar; 49(3):e307. PubMed ID: 28336955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target.
    Ferrucci A; Moschetta M; Frassanito MA; Berardi S; Catacchio I; Ria R; Racanelli V; Caivano A; Solimando AG; Vergara D; Maffia M; Latorre D; Rizzello A; Zito A; Ditonno P; Maiorano E; Ribatti D; Vacca A
    Clin Cancer Res; 2014 Nov; 20(22):5796-807. PubMed ID: 25212607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers.
    Linklater ES; Tovar EA; Essenburg CJ; Turner L; Madaj Z; Winn ME; Melnik MK; Korkaya H; Maroun CR; Christensen JG; Steensma MR; Boerner JL; Graveel CR
    Oncotarget; 2016 Oct; 7(43):69903-69915. PubMed ID: 27655711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development.
    Costa R; Shah AN; Santa-Maria CA; Cruz MR; Mahalingam D; Carneiro BA; Chae YK; Cristofanilli M; Gradishar WJ; Giles FJ
    Cancer Treat Rev; 2017 Feb; 53():111-119. PubMed ID: 28104566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The clinical and functional significance of c-Met in breast cancer: a review.
    Ho-Yen CM; Jones JL; Kermorgant S
    Breast Cancer Res; 2015 Apr; 17(1):52. PubMed ID: 25887320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting triple negative breast cancer with histone deacetylase inhibitors.
    Fedele P; Orlando L; Cinieri S
    Expert Opin Investig Drugs; 2017 Nov; 26(11):1199-1206. PubMed ID: 28952409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cabozantinib (XL184) Inhibits Growth and Invasion of Preclinical TNBC Models.
    Sameni M; Tovar EA; Essenburg CJ; Chalasani A; Linklater ES; Borgman A; Cherba DM; Anbalagan A; Winn ME; Graveel CR; Sloane BF
    Clin Cancer Res; 2016 Feb; 22(4):923-34. PubMed ID: 26432786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification.
    Guestini F; McNamara KM; Ishida T; Sasano H
    Expert Opin Ther Targets; 2016 Jun; 20(6):705-20. PubMed ID: 26607563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular pathways: PI3K pathway targets in triple-negative breast cancers.
    Gordon V; Banerji S
    Clin Cancer Res; 2013 Jul; 19(14):3738-44. PubMed ID: 23748695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active kinase profiling, genetic and pharmacological data define mTOR as an important common target in triple-negative breast cancer.
    Montero JC; Esparís-Ogando A; Re-Louhau MF; Seoane S; Abad M; Calero R; Ocaña A; Pandiella A
    Oncogene; 2014 Jan; 33(2):148-56. PubMed ID: 23246963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emerging role of MET/HGF inhibitors in oncology.
    Scagliotti GV; Novello S; von Pawel J
    Cancer Treat Rev; 2013 Nov; 39(7):793-801. PubMed ID: 23453860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing biomarkers to predict benefit from HGF/MET pathway inhibitors.
    Koeppen H; Rost S; Yauch RL
    J Pathol; 2014 Jan; 232(2):210-8. PubMed ID: 24105670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a novel inhibitor of triple-negative breast cancer cell growth by screening of a small-molecule library.
    Fujita T; Mizukami T; Okawara T; Inoue K; Fujimori M
    Breast Cancer; 2014 Nov; 21(6):738-47. PubMed ID: 23456737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the hepatocyte growth factor-cMET axis in cancer therapy.
    Blumenschein GR; Mills GB; Gonzalez-Angulo AM
    J Clin Oncol; 2012 Sep; 30(26):3287-96. PubMed ID: 22869872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.