These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25084867)

  • 1. Communication: Effect of solvophobic block length on critical micelle concentration in model surfactant systems.
    Nikoubashman A; Panagiotopoulos AZ
    J Chem Phys; 2014 Jul; 141(4):041101. PubMed ID: 25084867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of molecular architectures and solvophobic additives on the aggregative properties of polymeric surfactants.
    Lin YL; Wu MZ; Sheng YJ; Tsao HK
    J Chem Phys; 2012 Mar; 136(10):104905. PubMed ID: 22423859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implicit solvent models for micellization of ionic surfactants.
    Jusufi A; Hynninen AP; Panagiotopoulos AZ
    J Phys Chem B; 2008 Nov; 112(44):13783-92. PubMed ID: 18844395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientational bonding model for temperature dependent micellization and solubility of diblock surfactants.
    Davis JR; Panagiotopoulos AZ
    J Chem Phys; 2009 Sep; 131(11):114901. PubMed ID: 19778143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Critical Micelle Concentration Discrepancy between Theory and Experiment.
    García Daza FA; Mackie AD
    J Phys Chem Lett; 2014 Jun; 5(11):2027-32. PubMed ID: 26273890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the critical micelle concentration in simulations of surfactant systems.
    Santos AP; Panagiotopoulos AZ
    J Chem Phys; 2016 Jan; 144(4):044709. PubMed ID: 26827230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte carlo simulations of micellization in model ionic surfactants: application to sodium dodecyl sulfate.
    Cheong DW; Panagiotopoulos AZ
    Langmuir; 2006 Apr; 22(9):4076-83. PubMed ID: 16618147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration.
    Inoue T; Yamakawa H
    J Colloid Interface Sci; 2011 Apr; 356(2):798-802. PubMed ID: 21295785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of micelle formation on the stability of colloid surfactant mixtures.
    Pool R; Bolhuis PG
    Phys Chem Chem Phys; 2010 Nov; 12(44):14789-97. PubMed ID: 20949141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-surface activity and micellization of ionic amphiphilic diblock copolymers in water. Hydrophobic chain length dependence and salt effect on surface activity and the critical micelle concentration.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2005 Oct; 21(22):9938-45. PubMed ID: 16229512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confinement induced critical micelle concentration shift.
    Zhang X; Chen G; Wang W
    J Chem Phys; 2007 Jul; 127(3):034506. PubMed ID: 17655447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of stiffness on the micellization behavior of model H4T4 surfactant chains.
    Firetto V; Floriano MA; Panagiotopoulos AZ
    Langmuir; 2006 Jul; 22(15):6514-22. PubMed ID: 16830992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of amphiphilic nanoparticle self-assembly.
    Davis JR; Panagiotopoulos AZ
    J Chem Phys; 2008 Nov; 129(19):194706. PubMed ID: 19026080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-consistent field modeling of linear nonionic micelles.
    Jódar-Reyes AB; Leermakers FA
    J Phys Chem B; 2006 Mar; 110(12):6300-11. PubMed ID: 16553448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Modeling of Surfactant Micellization Using Solvent-Accessible Surface Area.
    Chen H; Panagiotopoulos AZ
    Langmuir; 2019 Feb; 35(6):2443-2450. PubMed ID: 30624073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics simulation of comicellization of amphiphilic block copolymers with different tail lengths.
    Hafezi MJ; Sharif F
    Langmuir; 2012 Nov; 28(47):16243-53. PubMed ID: 23092445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate free energies of micelle formation.
    Pool R; Bolhuis PG
    J Phys Chem B; 2005 Apr; 109(14):6650-7. PubMed ID: 16851747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collapse transitions in thermosensitive multi-block copolymers: a Monte Carlo study.
    Rissanou AN; Tzeli DS; Anastasiadis SH; Bitsanis IA
    J Chem Phys; 2014 May; 140(20):204904. PubMed ID: 24880322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence dependence of critical properties for two-letter chains.
    Panagiotopoulos AZ
    J Chem Phys; 2024 Jun; 160(23):. PubMed ID: 38884406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.