These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 25084870)

  • 1. Communication: Analysing kinetic transition networks for rare events.
    Stevenson JD; Wales DJ
    J Chem Phys; 2014 Jul; 141(4):041104. PubMed ID: 25084870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating rate constants and committor probabilities for transition networks by graph transformation.
    Wales DJ
    J Chem Phys; 2009 May; 130(20):204111. PubMed ID: 19485441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability.
    Sharpe DJ; Wales DJ
    Phys Rev E; 2021 Jul; 104(1-2):015301. PubMed ID: 34412280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rare events and first passage time statistics from the energy landscape.
    Swinburne TD; Kannan D; Sharpe DJ; Wales DJ
    J Chem Phys; 2020 Oct; 153(13):134115. PubMed ID: 33032418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Unified Framework for Event Summarization and Rare Event Detection from Multiple Views.
    Kwon J; Lee KM
    IEEE Trans Pattern Anal Mach Intell; 2015 Sep; 37(9):1737-50. PubMed ID: 26353123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A framework of joint graph embedding and sparse regression for dimensionality reduction.
    Xiaoshuang Shi ; Zhenhua Guo ; Zhihui Lai ; Yujiu Yang ; Zhifeng Bao ; Zhang D
    IEEE Trans Image Process; 2015 Apr; 24(4):1341-55. PubMed ID: 25706635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining, Calculating, and Converging Observables of a Kinetic Transition Network.
    Swinburne TD; Wales DJ
    J Chem Theory Comput; 2020 Apr; 16(4):2661-2679. PubMed ID: 32155072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysing ill-conditioned Markov chains.
    Woods EJ; Kannan D; Sharpe DJ; Swinburne TD; Wales DJ
    Philos Trans A Math Phys Eng Sci; 2023 Jul; 381(2250):20220245. PubMed ID: 37211032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions.
    Hyman JD; Hagberg A; Srinivasan G; Mohd-Yusof J; Viswanathan H
    Phys Rev E; 2017 Jul; 96(1-1):013304. PubMed ID: 29347061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph transformation method for calculating waiting times in Markov chains.
    Trygubenko SA; Wales DJ
    J Chem Phys; 2006 Jun; 124(23):234110. PubMed ID: 16821910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities.
    Barbu A; Zhu SC
    IEEE Trans Pattern Anal Mach Intell; 2005 Aug; 27(8):1239-53. PubMed ID: 16119263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR).
    Huang X; Zi Z
    Mol Biosyst; 2014 Aug; 10(8):2023-30. PubMed ID: 24899235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition path sampling for discrete master equations with absorbing states.
    Eidelson N; Peters B
    J Chem Phys; 2012 Sep; 137(9):094106. PubMed ID: 22957554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The parasite capacity of the host population].
    Kozminskiĭ EV
    Parazitologiia; 2002; 36(1):48-59. PubMed ID: 11965643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The barrier method: a technique for calculating very long transition times.
    Adams DA; Sander LM; Ziff RM
    J Chem Phys; 2010 Sep; 133(12):124103. PubMed ID: 20886920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel analytical method for evolutionary graph theory problems.
    Shakarian P; Roos P; Moores G
    Biosystems; 2013 Feb; 111(2):136-44. PubMed ID: 23353025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral coarse graining for random walks in bipartite networks.
    Wang Y; Zeng A; Di Z; Fan Y
    Chaos; 2013 Mar; 23(1):013104. PubMed ID: 23556941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensions to the likelihood maximization approach for finding reaction coordinates.
    Peters B; Beckham GT; Trout BL
    J Chem Phys; 2007 Jul; 127(3):034109. PubMed ID: 17655433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple graph label propagation by sparse integration.
    Karasuyama M; Mamitsuka H
    IEEE Trans Neural Netw Learn Syst; 2013 Dec; 24(12):1999-2012. PubMed ID: 24805218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.