These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25084935)

  • 1. An atomic charge model for graphene oxide for exploring its bioadhesive properties in explicit water.
    Stauffer D; Dragneva N; Floriano WB; Mawhinney RC; Fanchini G; French S; Rubel O
    J Chem Phys; 2014 Jul; 141(4):044705. PubMed ID: 25084935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Favorable adsorption of capped amino acids on graphene substrate driven by desolvation effect.
    Dragneva N; Floriano WB; Stauffer D; Mawhinney RC; Fanchini G; Rubel O
    J Chem Phys; 2013 Nov; 139(17):174711. PubMed ID: 24206326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    J Mol Graph Model; 2015 Sep; 61():175-85. PubMed ID: 26275931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration patterns of graphene-based nanomaterials (GBNMs) play a major role in the stability of a helical protein: a molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    Langmuir; 2013 Nov; 29(46):14230-8. PubMed ID: 24144078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computation of the binding free energy of peptides to graphene in explicit water.
    Welch CM; Camden AN; Barr SA; Leuty GM; Kedziora GS; Berry RJ
    J Chem Phys; 2015 Jul; 143(4):045104. PubMed ID: 26233167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of peptide-graphene interactions in explicit water.
    Camden AN; Barr SA; Berry RJ
    J Phys Chem B; 2013 Sep; 117(37):10691-7. PubMed ID: 23964693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between graphene oxide and Pluronic F127 at the air-water interface.
    Li S; Guo J; Patel RA; Dadlani AL; Leblanc RM
    Langmuir; 2013 May; 29(19):5742-8. PubMed ID: 23635085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.
    Yu Y; Murthy BN; Shapter JG; Constantopoulos KT; Voelcker NH; Ellis AV
    J Hazard Mater; 2013 Sep; 260():330-8. PubMed ID: 23778259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of graphene-based nanomaterial as nanocarrier for adsorption of paclitaxel anticancer drug: a molecular dynamics simulation study.
    Hasanzade Z; Raissi H
    J Mol Model; 2017 Feb; 23(2):36. PubMed ID: 28120117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations.
    Sun X; Feng Z; Hou T; Li Y
    ACS Appl Mater Interfaces; 2014 May; 6(10):7153-63. PubMed ID: 24801143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene oxide strongly inhibits amyloid beta fibrillation.
    Mahmoudi M; Akhavan O; Ghavami M; Rezaee F; Ghiasi SM
    Nanoscale; 2012 Dec; 4(23):7322-5. PubMed ID: 23079862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution.
    Hartono T; Wang S; Ma Q; Zhu Z
    J Colloid Interface Sci; 2009 May; 333(1):114-9. PubMed ID: 19233379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the Interaction of Graphene Oxide with Serum Proteins and the Impact of the Degree of Reduction and Concentration.
    Wei XQ; Hao LY; Shao XR; Zhang Q; Jia XQ; Zhang ZR; Lin YF; Peng Q
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13367-74. PubMed ID: 26029973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting Properties of Defective Graphene Oxide: A Molecular Simulation Study.
    Xu K; Zhang J; Hao X; Zhang C; Wei N; Zhang C
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29899306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies.
    Zhu J; Andres CM; Xu J; Ramamoorthy A; Tsotsis T; Kotov NA
    ACS Nano; 2012 Sep; 6(9):8357-65. PubMed ID: 22861527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent sensors using DNA-functionalized graphene oxide.
    Liu Z; Liu B; Ding J; Liu J
    Anal Bioanal Chem; 2014 Nov; 406(27):6885-902. PubMed ID: 24986027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction.
    Singla P; Riyaz M; Singhal S; Goel N
    Phys Chem Chem Phys; 2016 Feb; 18(7):5597-604. PubMed ID: 26863069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.