These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25085150)

  • 1. Contactless measurement of nonlinear conductivity in the radio-frequency range.
    Došlić M; Pelc D; Požek M
    Rev Sci Instrum; 2014 Jul; 85(7):073905. PubMed ID: 25085150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Note: radio frequency inductance-capacitance band-stop filter circuit to perform contactless conductivity measurements in pulsed magnetic fields.
    Altarawneh MM
    Rev Sci Instrum; 2012 Sep; 83(9):096102. PubMed ID: 23020430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrodeless system for measurement of liquid sample dielectric properties in radio frequency band.
    Hartwig V; Giovannetti G; Vanello N; Costantino M; Landini L; Benassi A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4127-30. PubMed ID: 17946603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emission and absorption quantum noise measurement with an on-chip resonant circuit.
    Basset J; Bouchiat H; Deblock R
    Phys Rev Lett; 2010 Oct; 105(16):166801. PubMed ID: 21230992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergent nematic susceptibility in an iron arsenide superconductor.
    Chu JH; Kuo HH; Analytis JG; Fisher IR
    Science; 2012 Aug; 337(6095):710-2. PubMed ID: 22879513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant torsional apparatus for contactless measurements of electrical conductivity and magnetic susceptibility of solids.
    Hendrickson JR; Philbrook J
    Rev Sci Instrum; 1979 Jul; 50(7):849-55. PubMed ID: 18699618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and implementation of improved L
    Zao Y; Ouyang Q; Chen J; Zhang X; Hou S
    Rev Sci Instrum; 2017 Aug; 88(8):084707. PubMed ID: 28863655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Usoskin A
    Rev Sci Instrum; 2007 May; 78(5):054701. PubMed ID: 17552846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximity detector circuits: an alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic field environments.
    Altarawneh MM; Mielke CH; Brooks JS
    Rev Sci Instrum; 2009 Jun; 80(6):066104. PubMed ID: 19566232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contactless measurement of critical current of high temperature superconductor tape by magnetic circuit.
    Gu C; Qu TM; Zou SN; Han Z
    Rev Sci Instrum; 2010 Aug; 81(8):085105. PubMed ID: 20815626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the application of heterodyne laser interferometer in power ultrasonics.
    Bartáková Z; Bálek R
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1567-70. PubMed ID: 16806363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronous measurement of even and odd order intermodulation distortion at the resonant frequency of a superconducting resonator.
    Pease EK; Dober BJ; Remillard SK
    Rev Sci Instrum; 2010 Feb; 81(2):024701. PubMed ID: 20192508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. System to measure accurate temperature dependence of electric conductivity down to 20 K in ultrahigh vacuum.
    Sakai C; Takeda SN; Daimon H
    Rev Sci Instrum; 2013 Jul; 84(7):075103. PubMed ID: 23902102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple Lorenz circuit and its radio frequency implementation.
    Blakely JN; Eskridge MB; Corron NJ
    Chaos; 2007 Jun; 17(2):023112. PubMed ID: 17614666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanded electrical model of a contactless conductivity detector: development and verification.
    Johnston SE; Fadgen KE; Tolley LT; Jorgenson JW
    J Chromatogr A; 2005 Nov; 1094(1-2):148-57. PubMed ID: 16257301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple nonlinearity evaluation and modeling of low-noise amplifiers with application to radio astronomy receivers.
    Casas FJ; Pascual JP; de la Fuente ML; Artal E; Portilla J
    Rev Sci Instrum; 2010 Jul; 81(7):074704. PubMed ID: 20687750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically detected magnetic resonance in a W-band microwave cavity.
    Lang V; Lo CC; George RE; Lyon SA; Bokor J; Schenkel T; Ardavan A; Morton JJ
    Rev Sci Instrum; 2011 Mar; 82(3):034704. PubMed ID: 21456773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simplified poly(dimethylsiloxane) capillary electrophoresis microchip integrated with a low-noise contactless conductivity detector.
    Liu B; Zhang Y; Mayer D; Krause HJ; Jin Q; Zhao J; Offenhäusser A
    Electrophoresis; 2011 Mar; 32(6-7):699-704. PubMed ID: 21341289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of amino acids by capillary electrophoresis with differential resonant contactless conductivity detector.
    Shen D; Li Y; Zhang Z; Zhang P; Kang Q
    Talanta; 2013 Jan; 104():39-43. PubMed ID: 23597886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.