These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 2508559)
41. Differential interaction of rabbit skeletal muscle phosphorylase kinase isozymes with calmodulin. Sharma RK; Tam SW; Waisman DM; Wang JH J Biol Chem; 1980 Dec; 255(23):11102-3. PubMed ID: 6777374 [TBL] [Abstract][Full Text] [Related]
42. Predicted calmodulin-binding sequence in the gamma subunit of phosphorylase b kinase. DeGrado WF; Erickson-Viitanen S; Wolfe HR; O'Neil KT Proteins; 1987; 2(1):20-33. PubMed ID: 3447166 [TBL] [Abstract][Full Text] [Related]
43. Interaction between lipids and bovine brain calmodulin: lysophosphatidylcholine-induced conformation change. Chiba K; Kurashima S; Mohri T Life Sci; 1990; 47(11):953-60. PubMed ID: 2215077 [TBL] [Abstract][Full Text] [Related]
44. Expression of the phosphorylase kinase gamma subunit catalytic domain in Escherichia coli. Cox S; Johnson LN Protein Eng; 1992 Dec; 5(8):811-9. PubMed ID: 1287663 [TBL] [Abstract][Full Text] [Related]
45. Ca2+- and Mg2+-dependent association of phosphorylase kinase with human erythrocyte membranes. Kyriakidis SM; Sotiroudis TG; Evangelopoulos AE Biochim Biophys Acta; 1988 Dec; 972(3):347-52. PubMed ID: 3196766 [TBL] [Abstract][Full Text] [Related]
46. A recombinant form of the catalytic subunit of phosphorylase kinase that is soluble, monomeric, and includes key C-terminal residues. Pete MJ; Liao CX; Bartleson C; Graves DJ Arch Biochem Biophys; 1999 Jul; 367(1):104-14. PubMed ID: 10375405 [TBL] [Abstract][Full Text] [Related]
47. The ATP-binding site in gamma subunit of phosphorylase kinase. Tagaya M; Hayakawa Y; Fukui T J Biol Chem; 1988 Jul; 263(21):10219-23. PubMed ID: 3392010 [TBL] [Abstract][Full Text] [Related]
48. Inactivation and reactivation of liver phosphorylase b kinase. Vandenheede JR; Keppens S; De Wulf H Biochim Biophys Acta; 1977 Apr; 481(2):463-70. PubMed ID: 15609 [TBL] [Abstract][Full Text] [Related]
49. The effect of heart and skeletal muscle troponin complexes and calmodulin on the Ca2+-dependent reactions of phosphorylase kinase isoenzymes. Yoshikawa K; Usui H; Imazu M; Takeda M; Ebashi S Eur J Biochem; 1983 Nov; 136(2):413-9. PubMed ID: 6628392 [TBL] [Abstract][Full Text] [Related]
50. Functional and structural similarities between the inhibitory region of troponin I coded by exon VII and the calmodulin-binding regulatory region of the catalytic subunit of phosphorylase kinase. Paudel HK; Carlson GM Proc Natl Acad Sci U S A; 1990 Sep; 87(18):7285-9. PubMed ID: 2402508 [TBL] [Abstract][Full Text] [Related]
51. Calcium control of muscle phosphorylase kinase through the combined action of calmodulin and troponin. Cohen P; Klee CB; Picton C; Shenolikar S Ann N Y Acad Sci; 1980; 356():151-61. PubMed ID: 6940494 [TBL] [Abstract][Full Text] [Related]
52. Direct visualization of the calmodulin subunit of phosphorylase kinase via electron microscopy following subunit exchange. Traxler KW; Norcum MT; Hainfeld JF; Carlson GM J Struct Biol; 2001 Sep; 135(3):231-8. PubMed ID: 11722163 [TBL] [Abstract][Full Text] [Related]
53. Multiple ubiquitination of vertebrate calmodulin by reticulocyte lysate and inhibition of calmodulin conjugation by phosphorylase kinase. Ziegenhagen R; Jennissen HP Biol Chem Hoppe Seyler; 1988 Dec; 369(12):1317-24. PubMed ID: 2853949 [TBL] [Abstract][Full Text] [Related]
54. Calcium- and calmodulin-dependent phosphorylase kinase activity in porcine uterine smooth muscle. Tsutou A; Nakamura S; Negami A; Mizuta K; Hashimoto E; Yamamura H Biochem Biophys Res Commun; 1985 Jan; 126(1):544-50. PubMed ID: 3970706 [TBL] [Abstract][Full Text] [Related]
55. The Mg2+ requirements of nonactivated and activated rat liver phosphorylase kinase. Inhibition of the activated form by free Mg2+. Chrisman TD; Sobo GE; Exton JH FEBS Lett; 1984 Feb; 167(2):295-300. PubMed ID: 6698212 [TBL] [Abstract][Full Text] [Related]
56. Studies on interaction of phosphorylase kinase from rabbit skeletal muscle with glycogen in the presence of ATP and ADP. Andreeva IE; Makeeva VF; Livanova NB; Petukhov SP; Kurganov BI Biochim Biophys Acta; 2001 Oct; 1549(2):188-96. PubMed ID: 11690656 [TBL] [Abstract][Full Text] [Related]
57. Inhibition of calmodulin function by CV-159, a novel dihydropyridine compound. Umekawa H; Yamakawa K; Nunoki K; Taira N; Tanaka T; Hidaka H Biochem Pharmacol; 1988 Sep; 37(18):3377-81. PubMed ID: 2844186 [TBL] [Abstract][Full Text] [Related]
58. The structural effects of endogenous and exogenous Ca2+/calmodulin on phosphorylase kinase. Nadeau OW; Sacks DB; Carlson GM J Biol Chem; 1997 Oct; 272(42):26202-9. PubMed ID: 9334188 [TBL] [Abstract][Full Text] [Related]
59. Synergistic activation by Ca2+ and Mg2+ as the primary cause for hysteresis in the phosphorylase kinase reactions. King MM; Carlson GM J Biol Chem; 1981 Nov; 256(21):11058-64. PubMed ID: 6793591 [TBL] [Abstract][Full Text] [Related]
60. Calcium release from intact calmodulin and calmodulin fragment 78-148 measured by stopped-flow fluorescence with 2-p-toluidinylnaphthalene sulfonate. Effect of calmodulin fragments on cardiac sarcoplasmic reticulum. Suko J; Pidlich J; Bertel O Eur J Biochem; 1985 Dec; 153(3):451-7. PubMed ID: 4076187 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]